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Abstract 
This report details the results of a study to determine biomedical computing requirements for 

high productivity computing systems.  The report examined needs with regards to: 1) the size 

and nature of demand; 2) the potential impact of high productivity computing technologies on 

important biomedical applications; and 3) R&D areas critical to advances in biomedical 

computing.  The report was compiled using multiple techniques, including: a review of 

biomedical computing needs as reported in literature; telephone and personal interviews with 

researchers and program managers; and a workshop to identify software environment 

requirements.  The study focused on five research areas: bioinformatics; computational protein 

biochemistry; computational biology; drug discovery; and computer-aided diagnostic imaging 

and image-guided interventions, and included case studies of researchers. 
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Introduction and Summary: 
 

This report details the results of the Biomedical Computing Requirements for High Productivity 

Computing Systems project for DARPA’s High Productivity Computing Systems (HPCS) R&D 

program. The biomedical HPCS community is a key segment of the industrial user community, 

important because of its potential market size and because of the large public-health benefits that 

can result from advances in medical research enabled by high-end computing. The research goal 

of this project is to determine biomedical computing requirements for high productivity 

computing systems in order to (1) define the size and nature of demand, (2) provide an 

assessment of the impact high productivity computing systems (HPCS) technologies can have on 

important biomedical problems and (3) highlight HPCS R&D areas critical to advances in 

biomedical computing.  

 

The study team used multiple techniques to gather, assimilate, and validate the biomedical HPCS 

requirements, including: (1) a comprehensive review of biomedical computing needs as reported 

in current literature; (2) telephone interviews with researchers and program managers; (3) a 

workshop to identify software environment requirements; (4) assimilation of the findings from 

tasks (1) - (3) into a preliminary report; (5) a workshop at which the preliminary report was 

discussed and revised as needed; and (6) a final report that synthesizes the discussions from the 

workshop and other community input. 
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Chapter 1: Biomedical Computing Overview 
 

Biomedical computing is the application and development of computer methods for biomedical 

research1. It spans many disciplines including bioinformatics, molecular modeling, systems 

biology, medical imaging, and others. The ultimate goal of biomedical computing is to advance 

the biomedical sciences by simulating life at all applicable levels of detail—the biochemical, 

physiological, cell, organ, organism, and population levels. The results promise to include better 

diagnoses, better drugs and other therapies that are developed faster, perhaps through mass 

customization, better surgical procedures, better prostheses, better recognition and repair of 

public health problems, and, thus, a healthier population, perhaps with lower medical costs. 

 

Example:   In collaboration with the Cleveland Clinic Foundation and the University of 

Auckland in New Zealand, the researchers in the Cardiac Mechanics Research Group explore 

the potential of a revolutionary surgical method for patients with severe heart failure. Through 

the combination of computational modeling with magnetic resonance imaging, the research is 

to predict which patients effectively can be rescued, using surgical ventricular reduction. 

 

Computers were originally invented to address problems in physics and cryptoanalysis. Later 

various communities realized the applicability of generalized computing to their applications. 

But the alignment of applications with computing capability has often lagged the available 

capability. For example, widespread use of computers in the first business applications occurred 

in the late 1950’s through the 1960’s, perhaps 12-15 years after the availability of adequate 

hardware. This is because application practitioners are typically focused more on the nature and 

progress of the applications per se than on the technology available to make processes more 

efficient. Typically computer systems have been adopted to speed up existing processes; 

eventually, enough practitioners arise who fully understand the nature of both the application 

area and the computing environment to enable the leap to applications that never would have 

been possible without the computer. This has occurred in the physical sciences and many 

communications, business and entertainment application areas, among others. The life sciences 

lag the physical sciences somewhat in this evolution, but such applications as 3-D computed 
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tomography and other imaging, genetic analysis, and advanced simulations hint at the dramatic 

possibilities for accelerating scientific advances and at a hugely expanding market for biomedical 

computing. Some of these applications require the most advanced computing capabilities 

available, and, indeed, some demand advances in the state of the computing technology at all 

levels. 

 

As has happened previously in the physical sciences, the role of computing is dramatically 

increasing in all areas of biological research. The initial wave of computational use focused on 

sequence analysis. While many unsolved problems remain in sequence analysis, current and 

future needs will focus on integration of diverse sets of data, originating from a variety of 

experimental techniques which are capable of producing data at the levels of entire cells, organs, 

organisms and populations2.  

 

Example:  A computational model of the cardiovascular system is aiding researchers in 

understanding the fundamental biochemical, biophysical, electrical and mechanical functions 

of the normal heart. The model is also advancing understanding of the molecular and genetic 

origins of heart disease, the electrical and mechanical properties of blood flow in large and 

small blood vessels; and the development of potential approaches for new cardiovascular 

drugs. A virtual lung model, developed at the Department of Energy’s Pacific Northwest 

National Laboratory, may help predict the impact of pollutants on respiratory systems and 

provide new insights into asthma, as well as other pulmonary diseases3. Using the virtual 

respiratory tract, PNNL scientists can analyze the influence of various factors, such as the 

amount of pollutants or length of exposure, on healthy versus diseased lungs by manipulating 

the computer model. With the model they can begin to simulate how gases, vapors and 

particulates may act differently within lungs of people suffering from cystic fibrosis, 

emphysema and asthma.   

 

Biomedical computing presents many challenges. First, biology is inherently non-linear and 

complex – current models are simplified linear approximations, often developed to fit into 

available computing resources. Inaccuracies entailed by this linearity severely limit the models’ 

applicability. 



 
 

 4

 

Another challenge is the sheer size of the solution spaces for some problems that must be solved 

by searching. For example, the alignment of two sequences of length 100 has on the order of 1030 

possible solutions. Various search strategies are employed to narrow or jump around the space, 

but the problem is still very hard to compute.  The following chart demonstrates the relationship 

between complexity and timescales. 

 

HighHigh--Performance Computing Roadmap   Performance Computing Roadmap    
for the Genomics: GTL Programfor the Genomics: GTL Program

Biological Complexity

Comparative
Genomics

Constraint-Based
Flexible Docking

1000 TF

100 TF

10 TF

1 TF*

Constrained
rigid

docking

Genome-scale
protein threading

Community metabolic
regulatory, signaling simulations

Molecular machine
classical simulation

Protein machine
Interactions

Cell, pathway, and 
network 

simulation

Molecule-based
cell simulation

*Teraflops

Current 
U.S. 
Computing

 
                                           Figure 1.1  Biological Complexity. 

Source: David Thomassen, Office of Biological and Environmental Research, DoE Office of Science 

 

A third major challenge is system complexity and the need to span multiple scales of biological 

organization. The dimensions of biological interest range from small organic molecules to multi-protein 

complexes to cellular processes to tissues to the interaction of human populations with the environment.  

Timescales present yet another challenge – times can vary from microseconds to generations of 

populations. The time scales of biological function range from very fast femtosecond molecular motions, 

to multi second protein folding pathways, to cell cycle and development processes that take place over the 

order of minutes, hours and days.  The linking of biological phenomena at all levels of temporal and 

spatial scale is driving the transformation from separate, anatomically-based domains of biological 

research to systems level research. 
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This transformation is, in turn, creating a critical need for theoretical, algorithmic and software 

advances in storing, retrieving, networking, processing, analyzing, navigating and visualizing 

biological information.  Indeed, biomedical computing is in many ways in its infancy in regards 

to use of computing; this presents its own set of challenges in that the field lacks well established 

algorithms and computational methods. In addition, while computing capabilities increase 

continuously, biomedical computing models generally are not re-designed to take advantage of 

either new hardware or of the most advanced high-end systems.   

 

The inherent complexity of biological systems, resulting from biological evolution and our lack 

of a comprehensive theory of biological organization at the molecular level requires 

sophisticated machine learning approaches in order to deal with huge amounts of data.  Machine 

learning methods (neural networks, hidden Markov models, etc.) are well suited for domains 

characterized by large quantities of data, noisy patterns and the absence of general theories. 
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These methods are computationally intensive, clearly require high-end computing capabilities, 

and would benefit from further improvements in computational performance. 

 

Through interviews to date, the study team has identified the following biological research where 

the requirement for HPCS is already widely recognized: 

 

• Structure of proteosome, ribozyme, ribosome, Adenosine Triphosphatase (ATPases), 

Virus, membrane protein complexes 

• Whole genome comparison 

• Combined quantum/classical simulations 

• Protein folding/threading 

• Microsecond time-scale simulations 

• Protein-protein and protein-DNA recognition and assembly 

 

This report details the results of the Federation of American Scientists’ review of Biomedical 

Computing Requirements for High Productivity Computing Systems under the project for 

DARPA’s High Productivity Computing Systems (HPCS) R&D program. We focus on five 

research directions and, where available, present case studies of a researcher within that thrust 

area.  

 

1.1 Bio-Computing Research Directions 
This report organizes biomedical computing in five major categories, each with a review of its 

algorithms and computational methods. The categories are as follows: 

• Bioinformatics (includes genomics, DNA sequencing, microarray technologies and 

bioinformatics): Research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze, or visualize such data. 

• Computational Protein Biochemistry (includes protein structure and proteomics):  The 

identification, characterization and quantification of all proteins involved in a particular 

pathway, organelle, cell, tissue, organ or organism that can be studied in concert to 

provide accurate and comprehensive data about that system. 
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• Computational Biology (includes molecular modeling, tissue engineering, organ 

modeling and systems biology) The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation techniques to 

the study of biological systems. 

• Drug Discovery (includes lead development, compound screening, and molecular 

docking) The discovery and development of compounds with the desired potency and 

selectivity, lack of toxicity and appropriate characteristics to enable it to reach its target 

in vivo, and then enter the early stages of development, where further large-scale 

investigations are undertaken. 

• Computer-aided diagnostic imaging and image-guided interventions  (includes 

segmentation, registration, and volume rendering as well as image guidance for surgical 

interventions) The development of  imaging for image-guided therapy, as well as 

molecular, functional, cellular, and genetic imaging tools, combining new information 

technology and image fusion/integration capabilities.  
 

1.1 Case Studies 
We present a case study for a selection of the categories above. While each case study represents 

the needs identified by an individual researcher, we selected the case studies that we hope are 

representative of the entire field and reflect the diversity of computational needs.  

Below each case study we also summarize the needs identified within each specialty. There is, 

however, not always a clear separation between research categories. Bioinformatic tools, for 

example, have impacted a broad range of research activities and are used by researchers in 

genomics and proteomics as well as by protein chemists and systems biologists. Researchers 

using molecular dynamics to study docking may consider themselves to be computational 

biologist, although we have classified them under protein biochemistry.  

 

Each of the chapters that follow focuses on a recognized research direction of bio-computing. 

Within each chapter is a presentation of the major computing thrust within that direction, a 

discussion of the key algorithms used by researchers, and a case study. We end the report with a 

case study of the DARPA funded, Virtual Soldier Project. The Virtual Soldier Project, which is 
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focused on complex mathematical models and visualization capabilities, represents an 

opportunity to develop and evaluate tools designed for a High Productivity Computing Systems. 

 

 

Chapter 2: Bioinformatics 
 

Bioinformatics is the development and application of computer methods for management, 

analysis, interpretation and prediction for molecular biology. It encompasses networking, 

databases, visualization techniques, search engine design, statistical techniques, modeling and 

simulation, AI and related pattern matching, and data mining. For this report, we include 

genomics IT, DNA sequencing, and microarray technologies in this category. Genomics IT is 

complex text searching of DNA sequences used in DNA sequence assembly and analysis. There 

are two tasks in computational genomics: sequencing and analysis. Sequencing requires putting 

together millions of pieces of short error-prone sequences. Analysis of DNA sequences requires 

finding the individual genes and other biological features (there are approximately 30,000 human 

genes, which comprise only 2% of the genome). Computer solutions to these problems include 

alignment algorithms, probabilistic techniques for sequence analysis and large systems built from 

these basic algorithms.  

 

The first step in the biological hierarchy is a comprehensive genome-based analysis of the 

rapidly emerging genomic data. Use of new microarray-based technologies make possible high-

throughput approaches that are rapidly generating terabytes of information, potentially providing 

fundamental insights into biological processes ranging from gene function to development, 

cancer, aging and pharmacology.  Modern sequencers produce 1000 base pair reads/sec and 

operate full-time for days at a time; continual improvements in technology increase the 

throughput. Even partial understanding of the data can provide valuable research information.  

At the same time the huge quantities of data are overwhelming conventional methods of 

biological analysis.   

 

Most genomics text searching algorithms are “embarrassingly parallel”; they can be 

deconstructed into a large number of independent searches with little message passing between 
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jobs. When the independent jobs are completed, the final results are assembled.  Computation is 

integer based. The computer systems used for the computation can be either SMPs, clusters of 

single CPU systems, or SMP clusters.  

 

There is significant research into new kinds of statistical models for predicting RNA structure. 

Hybrids of Hidden Markov Models (HMMs) and neural nets, dynamic Bayesian nets, factorial 

HMMs, Boltzmann trees and hidden Markov random fields are among the areas being explored.4   

 

2.1 Biological Data Explosion 
Biological data is now estimated to be doubling every six months. The GenBank Database alone 

grew from 680,338 base pairs in 1982 to 22 billion base pairs in 2002 (compared to 13.5 base 

pairs as of August 20015) and is now doubling in around 10 months. Currently the database 

grows by more than 11,000,000 bases per day (See Figure 2.1). GenBank is the NIH genetic 

sequence database, an annotated collection of all publicly available DNA sequences, and is part 

of the International Nucleotide Sequence Database Collaboration, which is comprised of the 

DNA DataBank of Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and 

GenBank at the National Center for Biotechnology Information. These three organizations 

exchange data daily. Each GenBank entry includes a concise description of the sequence, the 

scientific name and taxonomy of the source organism, and a table of features that identifies 

coding regions and other sites of biological significance, such as transcription units, sites of 

mutations or modifications, and repeats. Protein translations for coding regions are included in 

the feature table. Bibliographic references are included along with a link to the Medline unique 

identifier for all published sequences.  
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                                                         Figure 2.1: Growth of GenBank 

 
Redundancies and database asynchrony are increasing because of the distributed and 

collaborative style of this research. As a result, database-to-database comparisons are required 

for analysis and validation, consuming ever more compute cycles and storage.  The rate of 

acquisition of human and other genomic data over the next few years will be approximately 100 

times higher than originally anticipated due to improved sequencing technology and methods.  

As complete genomes are sequenced, the length of DNA comparison strings will change from 

single genes to entire genomes, with a concomitant expansion in the time to compute.  To look at 
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long-range patterns of expression synthetic regions on the order of 10’s of megabases become 

reasonable lengths for consideration6. The challenges include: access, storage, and archiving. 

 

2.2 Sequence Alignment Algorithms 
Biological R&D often requires the comparison of two or more sequences. Similarity 

comparisons evaluate the “closeness” of sequences to each other by computing a metric that 

includes a reward for allowed differences and penalty for disallowed differences.  An objective 

function determines what rewards and penalties are important and how to combine these into the 

closeness metric. Corresponding to the modes of biology there are two types of sequence 

assessment:  homology evaluation and contextual analysis. Both types of analyses and objective 

functions are used to determine the best alignment of the sequences in question. 

 

Homology evaluation looks for evidence that biological sequences are related by evolution. 

Orthologs are related molecules that have been changed due to speciation, while paralogs are 

replicated molecules in the same organism that have been altered through generations of 

independent mutation. Homology analyses depend on a proper analysis of related sequences 

because it is necessary to predetermine notions of which mutations are allowed and the rate they 

can be expected to occur.   

 

Contextual analyses are used to join together many small sequences into fewer, longer 

sequences.  They can also be used to find vector contamination in sequences, evaluate primer 

candidates, and perform biochip design.  Contextual analyses look for the common features 

among sequences without concern for whether the sequences have a common ancestor.  The 

comparisons determine whether sequences overlap or are contained within another sequence7. 

 

 

2.3 Pairwise Sequence Alignment Algorithms 
The objective of a sequence alignment algorithm is to position amino acid sequences so that the 

matched stretches of amino acids correspond to common structural or functional features.  Gaps 

in the aligned sequences correspond to regions where polypeptide loops are deleted or inserted.  

Sequence alignment is a key component of many procedures for predicting the structure of a new 



 
 

 12

protein whose sequence has just been determined.  There are three general types of sequence-

alignment methods: 

 

• Algorithms that attempt to match two sequences along their entire length 

• Algorithms that search for local alignments involving sections (not necessarily 

continuous) from the sequences. The best known of these are Needle-Waterman and 

Smith and Waterman. 

• Heuristic methods – BLAST and FASTA 

 

There are cases where sequences share a similar region but are otherwise completely different. 

Take, for example, the amino acids in the active site of an enzyme or transcription factor binding 

sites in a DNA sequence. To handle these cases local multiple alignment algorithms have been 

developed. Usually they only look for ungapped alignments thereby avoiding the problem of 

choosing the optimal gap penalty. A discussion of some of the most popular sequence-alignment 

applications and algorithms follows. 

  

Basic Local Alignment Search Tool (BLAST) 

BLAST is a general purpose similarity search tool that may be used in contextual and homology 

analyses.  It has good sensitivity and very good specificity and can report multiple local 

alignments between sequences. The BLAST algorithm is a heuristic search method.  The 

programs use the statistical methods of Karlin and Altschul8.  For a detailed description of the 

BLAST algorithm see http://www.blc.arizona.edu/courses/bioinformatics/book_pages/blast.html.  

A public domain version of BLAST is available from the Blast server at 

http://www.ncbi.nlm.nih.gov/BLAST/. There are many variants of BLAST, including: 

1. BLASTN - Compares a DNA query to a DNA database. Searches both strands automatically. 

It is optimized for speed, rather than sensitivity.  

2. BLASTP - Compares a protein query to a protein database.  

3. BLASTX - Compares a DNA query to a protein database, by translating the query sequence 

in the 6 possible frames, and comparing each against the database (3 reading frames from 

each strand of the DNA) searching.  
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4. TBLASTN - Compares a protein query to a DNA database, in the 6 possible frames of the 

database.  

5. TBLASTX - Compares the protein encoded in a DNA query to the protein encoded in a 

DNA database. 

6. BLAST2 - Also called advanced BLAST. It can perform gapped alignments.  

7. PSI-BLAST - (Position Specific Iterated) Performs iterative database FastA 

 

FastA compares a DNA sequence to a DNA database or a protein sequence to a protein database. 

Practically, FastA is a family of programs, which include: FastA, TFastA, Ssearch, etc. 

http://www2.ebi.ac.uk/fasta3/.  For a sketch of the algorithm see 

http://www.math.tau.ac.il/~rshamir/algmb/98/scribe/html/lec04/node14.html.  

 

Dynamic Programming and the Needleman-Wunsch Algorithm   

The Needleman-Wunsch Algorithm is widely used for aligning pairs of sequences.  The 

algorithm finds the optimal alignment based upon the scoring matrix used. [Needleman and 

Wunsch, 1970]. The algorithm uses dynamic programming, which forms the basis for a number 

of widely used methods in bioinformatics.  As mentioned in the introduction, sequence 

alignment is a ‘hard’ problem because there are an extremely large number of possible solutions, 

on the order of 1030 for two sequences of length 100.   

 

Smith-Waterman (many variants available) 

The Smith-Waterman algorithm finds optimal, local alignment of nucleotide or peptide 

sequences and is typically used when low to moderate sequence identity is expected.  

Alignments are optimal because the algorithm considers all possible ways that two sequences 

can be matched up and reports the one with the best score. The Smith-Waterman algorithm is a 

database search algorithm based on the Needleman and Wunsch algorithm. The Smith-Waterman 

algorithm uses dynamic programming to take alignments of any length, at any location, in any 

sequence, and determines whether an optimal alignment can be found. Based on these 

calculations, scores or weights are assigned to each character-to-character comparison: positive 

for exact matches/substitutions, negative for insertions/deletions. In weight matrices, scores are 

added together and the highest scoring alignment is output. Smith-Waterman is superior to the 
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BLAST and FASTA algorithms because it searches a larger field of possibilities, making it more 

sensitive; however, individual, pair-wise comparisons between letters slow down the process 

significantly.  

 
Instead of looking at an entire sequence at once, the Smith-Waterman algorithm compares multi-

length segments, looking for whichever segment maximizes the scoring measure. The algorithm 

itself is recursive:9  

 

H i j = max{H i-1, j-1 + s(a i, b j ); H i-k, j - W k ; H i, j-1 - W 1 ;0}.  

Many groups use special hardware and software, such as Bioccelerator, to execute the alg 

orithm. See http://dapsas1.weizmann.ac.il\bcd\bcd_parent\bcd_bioccel\bioccel.html. 

 

Hidden Markov Models 

Hidden Markov Models (HMMs) are commonly used to specify protein profiles10. HMMs are 

built upon finite state machines with probabilities attached, i.e., stochastic regular grammars. 

HMMs have been generalized to recognize RNA secondary structure motifs using HMM 

algorithms with stochastic context-free grammars (SCFG) to capture conserved base-pairing.  

HMMs use position-specific scoring for the matching or substitution of a residue and for the 

opening or extension of a gap. HMMs are available from large, well-maintained libraries.  

HMMs have successfully been used in speech recognition as well as biology11.  There are many 

variants available, see: 

 

• HMMER is Sean Eddy’s popular software for running HMMs. http://hummer.wustl.edu. 

• SAM (Sequence Alignment and Modeling Systems) is HMM software developed by 

Richard Hughey, Kevin Karplus and David Haussler at UC Santa Cruz12. 

http://cse.ucsc.edu/compbio/HMM-applicationsapps/HMM-.html. 

• HMMpro is commercial HMM software developed by Pieere Baldi and Yves Chavin at 

NetID Inc. (http://www.netid.com). 
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tRNA Structure Modeling 

Stochastic grammars can be applied to biological sequences.  SCFGs, in particular, and the 

corresponding learning algorithms have been used to derive statistical models of tRNA.  SCFGs, 

however, have some limitations.  First, they are computationally intensive, so that in their present 

form they become somewhat impractical for long sequences, typically above N=200.  Second, 

not all RNA structures can be captured by an SCFG.  The associated parse trees cannot capture 

tertiary interactions such as pseudoknots and non-pairwise interactions.  Third, they do not 

include a model for introns that present in some tRNA genes.  Future requirements include13: 

• Algorithmic and hardware speed improvements. 

• Development of grammars, perhaps graph grammars, or other models, and the 

corresponding training algorithm to incorporate RNA tertiary structures, and possibly the 

tertiary structure of other molecules. 

• Combination of SCFGs in modular ways, as for HMMs, to model more complex RNA 

sequences, including the corresponding introns. 

• Modeling larger and more challenging RNA sequences, such as rRNA. 

• Developing hybrid SCFG/NN architectures (or SG/NN), where NN is used to compute 

the parameters of a SCFG and/or to modulate or mix different SCFGs. 

 

2.4 Multiple Alignment Methods 
The Needleman and Wunsch algorithm for finding the best global alignment of two sequences 

can readily be extended to multiple sequences. The problem is that the time the computer needs 

for such a job is roughly proportional to the product of the sequence lengths. So, if aligning two 

sequences of 300 positions takes 1 second, aligning 3 sequences takes 300 seconds and aligning 

10 sequences would take 300x108 seconds, which is longer than the lifetime of the universe! 

Since searching for a best global alignment using a rigorous algorithm is not realistic for more 

than three sequences, a number of strategies have been developed to carry out a multiple global 

alignment in a reasonable amount of time with a reasonable chance of finding the best alignment.  

 
CLUSTAL W 

CLUSTAL is one of the most popular packages for multiple sequence alignment. Multiple 

sequence alignment of nucleotide or protein sequences is an important tool in modern biology 
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that helps reveal similarities or differences between various sequences. Its main features include 

carrying out multiple alignments of a large number of sequences with additional features for 

profile alignments (alignments of old alignments) and phylogenetic analysis. (Neighbor Joining 

trees can be calculated after multiple alignment with a bootstrapping option). The CLUSTAL 

alignment algorithm consists of 3 steps: 

 

• calculation of pairwise sequence similarities in order to calculate a distance matrix giving 

a divergence of each pair of sequences. 

• construction of a guide tree (or a dendogram) from the distance matrix.  

• multiple alignment of the sequences in a pairwise manner according to the branching 

order in the guide tree. 

FastME  

FastME is a fast phylogeny reconstruction program based on the minimum evolution method. 

Among distance methods, FastME has shown better topological accuracy than Neighbor Joining, 

BIONJ, WEIGHBOR and FITCH.  FastME first builds an initial tree, using either GME or BME 

algorithms, and then improves this tree by tree swapping, using either FASTNNI or BNNI 

algorithms. GME and FASTNNI optimize the ordinary least-squares (OLS) version of the 

minimum-evolution principle, while BME and BNNI optimize the balanced version14.  A public 

version is available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Desper/FastME.html 
 

PHYLIP   

PHYLIP (PHYLogeny Inference Package) is a package of programs for inferring phylogenies 

(evolutionary trees). It is maintained and developed by Dr. Joe Felsenstein (University of 

Washington). Methods that are available in the PHYLIP package include DNA and protein 

parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus 

trees15.  

 

Gibbs Sampler 

The Gibbs sampler algorithm involves iteratively making a profile with stretches of n bases or 

amino acids, selected from the sequences, and then searches this profile against one of the 

sequences. The result of the search is used to weight the selection of the stretches at the next run. 
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A drawback is that the user must choose the width n and the number of elements in each 

sequence and thus must have a certain idea of the outcome, or run the program several times. An 

interesting feature is that the Gibbs sampler algorithm avoids the choice of an externally added 

scoring scheme since it derives the highest scoring profile, in a self-consistent manner, from the 

data16. The Wadsworth Center of the New York State Department of Health maintains current 

versions of the Gibbs Motif Sampler at http://bayesweb.wadsworth.org/gibbs/gibbs.html. 

 

2.5 Data Mining 
With the dramatic increase in the amount of information stored in electronic format, the term 

'Data Mining' (or 'Knowledge Discovery') has been coined to describe a variety of techniques to 

identify information or decision-making knowledge in bodies of data, and extracting this 

knowledge in such a way that it can be put to use in areas such as decision support, prediction, 

forecasting and estimation. Data mining techniques are an automated means of reducing the 

complexity of data in large bioinformatics databases and of discovering meaningful and useful 

patterns and relationships in data. Common data mining methods and tools are: feature selection, 

classification, and regression. We describe some of these methods and their applications in more 

detail below.  

 

Feature Selection  

Feature extraction/selection is an important problem in knowledge discovery, not only for the 

insight gained from determining relevant modeling variables but also for the improved 

understandability, scalability, and possibly, accuracy of the resulting models.  Feature extraction 

constructs a new set of variables by performing a linear or non-linear transformation on the old 

variables. Feature selection attempts to remove redundant features that do not provide additional 

information.  A common way to classify feature extraction/selection algorithms is determined by 

how the learning method is integrated into the algorithm. A filter approach is where the selection 

of features is independent of the learning algorithm. On the other hand, if the features are 

generated and directly evaluated by a classifier or regression algorithm, the method is known as a 

wrapper approach.   
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Many feature selection algorithms can be classified into one of three groups:  exhaustive search, 

heuristic search, and randomized search.  Exhaustive search is a brute force approach where 

every possible subset is tested with the performance measure, and the best one is chosen.  It 

guarantees the optimal subset as a result.  If the number of features is large, however, this 

approach is intractable.  Heuristic search is where a set of heuristics is used to greedily but 

intelligently search through the subset space to identify a subset with a reasonable performance 

measure.  Forward Selection (FS) and Backward Elimination (BE)17 are two examples of the 

heuristic search method.  Both the FS and BE algorithms are iterative. FS starts with the empty 

set of features and proceeds to add additional features. Each additional feature is chosen to 

optimize the performance of the previous feature subset with the new feature added. The process 

stops when increasing the size of the current best subset leads to a lower performance. BE starts 

with the complete set of features and selects the as the next feature set the subset that optimizes 

the performance measure with one feature less than the current set. The process stops when 

decreasing the size of the current best subset leads to a lower performance.   

 

There are many variants of Forward Selection and Backward Elimination.  Randomized search 

uses randomized or probabilistic methods to search through the subset space.  Genetic 

Algorithms18 and Scatter Search algorithms19 are examples of this approach.  Both use the 

Darwinian evolution concept to progressively search for better subsets.  Neither heuristic search 

nor randomized search techniques guarantee optimal results.  

 

One area that has received much attention in the feature selection literature20 21 22 is the 

identification of gene SNP patterns impacting cure or drug development for various diseases. 

Genomic studies provide large volumes of data with the number of single nucleotide 

polymorphisms (SNPs) ranging into thousands. The analysis of SNPs permits determining 

relationships between genotypic and phenotypic information as well as the identification of SNPs 

related to a disease. 

 

Classification and Regression 

In statistics, classification is a type of statistical algorithm that takes a feature representation of 

an object or concept and learns to map it to a classification label. In a biological setting, the label 
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might refer to gene function, protein structure, or therapeutic outcome. Classification is as an 

instance of a broader class of machine learning algorithms. Two common algorithmic types in 

machine learning are supervised and unsupervised learning. Many of the tools used for 

classification are also used for regression problems. 

 

Supervised learning is a machine learning technique for creating a function from training data. 

The training data consists of pairs of input objects and desired outputs. The output of the 

function can be a continuous value (see regression), or can predict a class label of the input 

object (called classification). The task of the supervised learner is to predict the value of the 

function for any valid input object after having seen only a small number of training examples. 

Unsupervised learning is a method where a model is fit to observations. It is distinguished from 

supervised learning by the fact that there is no a priori output.  

 

Neural networks have become a popular tool for classification, as they are very flexible and do 

not assume any parametric form for distinguishing between categories. Applications can be 

found in both the frequentist and Bayesian literature. An aspect of neural network computational 

practices, which related to feature selection algorithms, is model selection. Much of the recent 

work on model selection using neural networks has been in the Bayesian framework; it includes 

Gaussian approximations for the posterior to approximate posterior probabilities23 and reversible 

jump MCMC methods24. More established methods25 include cross-validation and penalized 

likelihood methods using the Akaike Information Criterion (AIC)26, the Bayesian Information 

Criterion(BIC)27, or the Network Information Criterion (NIC)28. A Bayesian approach to model 

selection is Automatic Relevance Detection (ARD)29, which uses an additional layer of hyper-

parameters to try to shrink unimportant variables. ARD, however, does not allow one to compute 

posterior probabilities of individual models.  

 
An example of the propagation of bioinformatic tools into the medical field is the growth of 

nursing databases. These databases, which are known to be massive and multidimensional, easily 

exceed the capabilities of both human cognition and traditional analytical approaches.  An 

emerging, innovative approach30 31 to knowledge discovery in large databases takes advantage of 

Bayesian confidence propagation neural networks (BCPNN), a state-of-the art representation of 
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probabilistic knowledge by a graphical diagram. Bayesian networks allow investigators to 

combine domain knowledge with statistical data, enabling nurse researchers to incorporate 

clinical and theoretical knowledge into the process of knowledge discovery in large datasets.  

 

2.6 Bioinformatics Case Study: Brian Athey, Ph.D.  
Dr. Athey is the Director of the Michigan Center for Biological Information (MCBI) at the 

University of Michigan. MCBI provides advanced bioinformatic and computational resources for 

investigators in the academic and industrial sectors of Michigan. Researchers have access to 

bioinformatics tools, genomics and proteomic databases, supercomputing resources, 

bioinformatics training, and bioinformatics consulting thought MCBI. MCBI is researching 

appropriate hardware, middleware, and networking structures for statewide analysis and data-

sharing in bioinformatics projects. 

 

As director of MCBI, Dr. Athey is responsible for ensuring researchers using MCBI facilities 

have access to the best resources available. In this capacity, he has identified three problems that 

need to be addressed: 

 

1. Data glut: As data sizes grow data motion will bottleneck the computing progress.  For 

example, in the 100 seconds it takes to move the 1 GB file, a 1 GHz machine could 

perform 0.1TeraOP.  Data needs to be local, and stay local.  Data motion needs to be 

asynchronous, and happen at near wire speeds.  Throwing money at the network does not 

solve the problem.  

2. Data storage: Many PC file systems hit the limits in the TB range. This will be 

problematic in the next year or two. A 1 TB database would require (ignoring other 

issues), 20000 seconds to read at 50 MB/sec. 

3. Compute cycles: Most bioinformatic applications are: integer bound; memory latency 

bound, and pointer chasers (cache thrashers). IA32 machines offer the best price 

performance for these classes of computations. 

 

Dr. Athey shares the feeling that general needs in biomedical sciences can be enabled by next 

generation supercomputing. Projects that will be enabled by HPCS include mouse/human 
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genome correlation, individual pharmacogenomic analysis using gene expression arrays, multi-

modal radiology image fusion, millisecond structural biology enabled by synchrotron x-ray 

sources and 900 MHz NMR, and physiologically competent Digital Human Simulations. He 

notes that not all biology problems are embarrassingly parallel; shared memory with database(s) 

close in is preferred in many (most) biologically interesting problems. 

 

The World Wide Web and bioinformatic databases have had a profound affect on the research 

activities of biologist. Bioinformatic tools have put the information available in these resources 

at the fingertips of researchers. Dr. Athey has identified several key informational needs of 

researchers. He anticipates the need for an almanac or index that would link every human gene to 

all the information known about these genes from the literature, from all relevant expenditures 

and other sources. In addition, better relational databases would help researchers to move from a 

gene by gene approach to focus more on patterns and pattern recognition. Better and system wide 

in silico models of human would allow researchers to begin to be able to understand how 

proteins are modified in disease states and obtain more detailed information on the structures of 

drug targets.  

 

 

2.7 Bioinformatics Needs 

Some thought has been given as to how to present the results of our informal survey. Due to the 

limited sample size, it would be inappropriate to represent the needs of the individuals selected 

for interviews as exhaustive of those of the entire spectrum researchers in the field in question, 

whether it is in bioinformatics, computational biology, protein biochemistry, or visualization. We 

can hope, however, that while our survey does not capture every conceivable need and 

requirement, it does capture a large subset of the core needs of the fields under consideration. 

With this in mind, we present a list of needs gathered from the interviewees who were willing to 

participate in our study. We would like to thank them all for their input. While many researchers 

interviewed were involved in projects spanning our categories, we grouped their comments 

according to which of our classification of bio-computing areas the comments appeared to fit in 

most appropriately. 
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Interviewees for Bioinformatics 

 

Brett Peterson, Ph.D. 

Dr. Peterson is health scientist administrator in National Center for Research Resources 

(NCRR’s) Division of Biomedical Technology.  The interview was held at the January 2003 

workshop. He discussed the Biomedical Informatics Research Network (BIRN), a National 

Institutes of Health initiative that fosters distributed collaborations in biomedical science by 

utilizing information technology innovations.   

 

Brian Athey, Ph.D. 

Brian Athey is Director of the Michigan Center for Biological Information at the University of 

Michigan.  MCBI provides advanced bioinformatics and computational resources for 

investigators in the academic and industrial sectors of Michigan. 

 

Stanley K. Burt, Ph.D. 

Stan Burt is the Director of the National Cancer Institute's Advanced Biomedical Computing 

Center (ABCC). The National Cancer Institute's supercomputing facility is a fully integrated, 

high performance, scientific computing resource located at the NCI-Frederick campus in 

Frederick, MD. 

 

Ron Elber, Ph.D. 

Ron Elber is a Professor in the Department of Computer Science at Cornell University. He is 

also on the faculty of the Cornell Genomics Initiative, Computational and Statistical Genomics 

Focus Area.  He is active in two areas of research: bioinformatics and molecular dynamics.  

 

Requirements 

1. There is a need to establish distributed and linked data collections for investigators’ 

research projects; enable access to heterogeneous "grid-based" computing resources for 

research project analyses; provide data mining tools to search multiple data collections or 

databases; develop the software and hardware infrastructure that will allow scientists to 

conduct valid multi-site, neuro-imaging studies, for example. 
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2.  Infrastructure must permit research that focuses on combining data from multiple 

acquisition sites and increasing the statistical power for studying relatively rare 

populations. 

3. Researchers need to operate in a heterogeneous computer environment in order to let 

them match their specific problem needs to the appropriate platform.   

4. As data sizes grow data motion will bottleneck the computing progress. Data needs to be 

local, and stay local.  Data motion needs to be asynchronous, and happen at near wire 

speeds.  Throwing money at the network does not solve the problem. 

5. Data size issues dominate processing time, data motion and data storage.  Data must be 

distributed, Data I/O must occur over many channels, and have no single points of flow.  

6. Bioinformatic applications depend on access to large quantities of data and often load 

gigabytes of data into memory at once. In addition, in a distributed environment, the data 

must be shared across all nodes and each node must be capable of storing at least 30 

gigabytes. 

 

Bioinformatics is a rapidly growing area of research. Most biologists talk about "doing 

bioinformatics" when they use computers to store, retrieve, analyze or predict the composition or 

the structure of biomolecules. While bioinformatics “grew up” dealing primarily with sequence 

analysis, bioinformatics tools have been incorporated into diverse fields, including comparative 

genomics, medical informatics, computational biology, cheminformatics, genomics, 

mathematical biology, proteomics, pharmacogenomics, and pharmacogenetics. The 

bioinformatics research community stands to benefit greatly from advances in high-productivity 

computing that enable seamless data-sharing and increased computational speed. 

 

 

Chapter 3: Computational Protein Biochemistry 
 

Determining the shape of proteins from their sequences is one of today’s great computational 

challenges.  The properties of any protein are largely determined by its structure. Proteins usually 

adopt a single structure, corresponding to the global minimum free energy under physiological 

conditions.  Protein sequences can generally fold into a unique state in just a few seconds (or 
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less) from any starting conformation.  Protein structures can be experimentally determined by 

crystallizing the protein and then using x-ray crystallography or NMR to find the position of the 

atoms, but this is a difficult procedure.  The experimental process of deciphering the atomic 

structures of the majority of cellular proteins is expected to take a century at the present rate of 

work.  Thus, there is strong interest in using computational methods to predict protein structure.  

The folded structure of a sequence is determined by the sequence of successive solid bend 

angles, where each angle can be represented by two planar angles.  It is possible to make such a 

problem discrete by limiting the ways to bend each angle, but doing so decreases the accuracy of 

the solution. Even with such techniques, a 100-residue protein would have a search space of 7100 

(~1084 configurations).  

The Levinthal Paradox describes the discrepancy between the time for an exhaustive search of all 

possible confirmations and the observed timescale of protein folding.  If it is assumed that there are 

three conformations for each amino acid then a polypeptide chain with say 1—amino acids would 

have about 10**48 conformations.  If the interconversion between conformations required just 

10**-11 seconds then it would take about 10**29 years to explore them all.  Of course, this is for 

the most basic of grid search algorithms, but even the most advanced systematic conformational 

search would still require an inordinate amount of time to identify the global minimum energy 

conformation. 

 

Example: (Duan and Kollman 1998]. 1 us simulation of a 36-residue peptide starting from a fully 

extended state.  This peptide is one of the smallest proteins that can fold autonomously, with 

folding estimated to take between 10 us and 100 us.  It contains three short alpha-helices.  The 

simulation involved in addition to the protein about 3000 water molecules and was performed in 

a truncated octahedron simulation box with a time step of 2 fs.  About 4 months of computing 

time on a 256-processor parallel computer was required for the 1 us simulation.  While the 

protein did not actually fold into the known experimental structure, a marginally stable state 

which showed significant resemblance to the native conformation was observed.  This state had a 

lifetime of about 150ns. 

 

Protein Biochemistry includes protein structure and proteomics. It includes the identification, 

characterization and quantification of all proteins involved in a particular pathway, organelle, 
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cell, tissue, organ or organism that can be studied in concert to provide accurate and 

comprehensive data about that system.   

 

3.1 Protein Folding 
A variety of approaches have been used for protein folding.  The most ambitious approaches 

attempt to solve it ab initio.  The conformational space of the molecule is explored to identify the 

appropriate structure.  The total number of conformations is very large, and so it is usual to try to 

find only the very lowest energy structures.  Some form of empirical force field is generally 

used, often augmented with a solvation term.  The global minimum in the energy function is 

assumed to correspond to the naturally occurring structure of the molecule.   

 

Rule-based methods, often called threading, have also used for protein folding.  This approach 

first determines which stretches of amino acids should adopt each type of secondary structure 

and then packs these secondary structural elements together to achieve a low-energy structure.  

The threading approach relies on the quality of the initial secondary structure prediction.  It 

works best if the structural class to which the protein belongs is known.  A third approach, 

comparative modeling, exploits the structural similarities between proteins by constructing a 3-D 

structure based on the known structure(s) of one or more related proteins.  When using 

comparative modeling, one must initially determine which protein structure(s) to use as the 3D 

templates, and then decide how to match the amino acids in the unknown structure with the 

amino acids in the known structure(s). Each of these methods is described in the following 

sections. 

 

 Ab Initio Prediction 

Ab initio prediction programs work by defining a global energy function and performing a search 

of possible bond-angle configurations to find one which minimizes total energy. Ab initio 

approaches explore the conformational space of the molecule to identify the appropriate 

structure.  Since the total number of possible conformations is very large, it is usual to try to find 

only the lowest energy structures.  Some form of empirical force field is usually used, often 

augmented with a solvation term.  
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Many methods are used for exploring the conformational space, many of which are analogous to 

the models used to perform Monte Carlo simulation of polymers, such as the lattice and ‘bead’ 

models. An optimization procedure based on simulated annealing or a genetic algorithm is often 

used with simplified molecular dynamics models to first identify families of low-energy 

structures, which may then be converted into a more detailed representation for subsequent 

refinement.  The most important issues are:  

 

1) the energy function selected – energy minimization functions include 

hydrophobic/hydrophilic interactions; size and flexibility properties of 

different amino acids; and electrostatic/Van der Waals interactions of nearby 

atoms; 

2) the optimization procedure employed to search the space – methods include 

gradient descent, simulated annealing, and genetic algorithms, possibly using 

parallel computation. 

 

The General Atomic and Molecular Electronic Structure System (GAMESS) is a general ab 

initio quantum chemistry package. GAMESS is maintained by the members of the Gordon 

research group at Iowa State University. For more information, visit: 

http://www.msg.ameslab.gov/GAMESS/GAMESS.html. 

 
Threading or Fold Assignment Approaches 

Many programs use known 3D structures to help determine a protein’s 3D structure.  Two amino 

acid sequences with 20% - 30% identical residues likely have similar 3D structures.  Threading, 

or inverse folding, programs are commonly used. The basic concept is to choose from among a 

number of 3D protein structures, typically chosen to represent a common structural class, chose 

the structure most compatible with the sequence of the unknown protein.  This is accomplished 

by “threading” the sequence through each protein structure in turn.  Threading methods are 

closely related to ad initio approaches to protein structure prediction, but threading methods 

inherently limit the search space to the conformations of known structures. 
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Threading programs use special searching methods such as double dynamic programming to 

efficiently find the best ways to match the sequence to the structure.  Approximations are used to 

make the problem more manageable.  Many of the scoring functions used in threading 

algorithms are potentials of mean force that provide an estimate of the free energy of interaction 

between two residues as a function of their separation.  These potentials of mean force are 

calculated from statistical analyses of known protein structures.   For threading algorithms one is 

particularly interested in the interactions between amino acids that are close in 3D space but far 

apart in the sequence, and the potentials used in such calculations are derived appropriately.  In 

addition, the pairwise knowledge-based term, a solvation contribution, is often added. Although 

knowledge-based potentials are most popular, it is also possible to use other types of potential 

function. 

 

No one single theoretical or experimental technique can predict protein function from sequence, 

rather it is the application of an appropriate combination of methods that is required.  There are 

two main approaches: 

 

1) developing potentials for fold assignment 

2) HMMs that are descended from alignment methods 

 
The input is 1) a protein structure, 2) a core model describing the position of the core residues 

and allowable lengths of loops and 3) a scoring function to evaluate the given threading.  

Without modeling pairwise interactions this is a simple dynamic programming problem.  It has 

been estimated that the success rate of fold assignment algorithms will increase to roughly 50% 

once the library of protein folds grows.  For the remaining genome sequences to be assigned to 

folds, it will be necessary to move to multi-positional compatibility functions.  Incorporating 

pairwise interactions will require tabulating the possible substructures for every base assignment, 

not just the best matching prefix structures.   

 

HMMs are used for fold identification by performing a standard sequence-based homology 

search using the probe sequence to generate homologous sequences.  These sequences can be 

used to construct an HMM based on the probe, and then sequences from a library of folds can be 
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matched against the HMM.  HMMs can also be used to construct separate HMMs for each 

member of a library of folds and then score the probe sequence against each model. Construction 

of HMMs is typically an iterative process involving successive periods of model building, 

searching with the given model, and model refinement.  Alignment to an HMM can be 

performed in an efficient recursive manner, similar to dynamic programming. 

 

Comparative Modeling 

Comparative modeling exploits the structural similarities between proteins by constructing a 3D 

structure based upon the known structures of one or more related proteins.  To do this, it is 

necessary to decide which protein structures to use as 3D templates, and then to decide how to 

match the amino acids in the unknown structure with the amino acids in the known structures. 

Comparative modeling methods consist of the following sequential steps: 

 

1) identify the proteins with known 3D structures that are related to the target 

sequence 

2) align these with the target sequence and pick those known structures that will be 

used as templates 

3) build the model for the target sequence given its alignment with the template 

structures 

4) evaluate the model against selected criteria 

5) if necessary, repeat the alignment and model building until a satisfactory 

evaluation is reached. 

 
In a typical comparative modeling exercise one would use a heuristic algorithm to determine 

possible sequences of interest, then the Smith-Waterman method to identify the appropriate sub-

sequences, and finally the Needleman-Wunsch algorithm to derive the alignment to use in the 

actual construction of the model. 

 

There are three different classes of method for constructing the 3D model. Generally, each of 

these three methods is used, with construction proceeding as in the following three-stage process. 
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1. Piece together rigid bodies taken from the template protein(s).  This step constructs the 

model from a few core regions, loops and side chains obtained from dissected related 

structures.  

2. Assemble the target protein by joining together small segments or by reconstructing a set 

of coordinates.  Segment matching relies on approximate positions of conserved atoms 

from the templates to calculate the coordinates of other atoms; this is achieved by the use 

of a database of short segments or protein structure, energy or geometry rules, or some 

combination of these criteria. Fragment assembly without using an underlying 

framework.  The fragments are taken from proteins of known structure which show local 

sequence similarity to the unknown target.  The initial structures resulting from this 

“splicing” process are then subjected to simulated annealing using a scoring function that 

has sequence-dependent terms and sequence0independent terms.  The most promising of 

several runs are selected.  

3. Generate a series of spatial restraints from the templates, which are used in conjunction 

with an optimization procedure to derive a structure of the target. Satisfaction of spatial 

constraints uses either distance geometry or optimization techniques to satisfy spatial 

restrains obtained from the alignment of the target sequence with homologous templates 

of know structure.  The optimization uses a combination of conjugate gradients, with 

molecular dynamics and simulated annealing. 

 

3.2 Computational Protein Biochemistry Case Study:  Ron Elber, Ph.D. 
Dr. Ron Elber is a Professor in the Department of Computer Science at Cornell University. He is 

also on the faculty of the Cornell Genomics Initiative, Computational and Statistical Genomics 

Focus Area.  He is active in two core areas of research: bioinformatics and molecular dynamics. 

In bioinformatics, he is interested in protein annotation (structure and function prediction), 

protein evolution, protein folding potentials, and protein alignment. In protein dynamics, he 

develops theory, algorithms, and computer code to simulate bio-molecular dynamics, the long 

dynamics of biophysical processes, and protein folding. Among the substances that have been 

studied in detail by Dr. Elber are the oxygen transport proteins hemoglobin and myoglobin and 

ion channels such as gramicidin. 
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Dr. Elber notes that bioinformatics and molecular dynamics present different computational 

demands. A molecular dynamic simulation of protein folding with a medium size protein of 150 

amino acids and from 1000 to 100000 particles can run for a month on a cluster of 100 off-the-

shelf CPU’s. On the other hand, most bioinformatics applications are much more rapid, 

completing within minutes or hours. While molecular dynamic simulations tend to require raw 

processing power, bioinformatic computation places a premium on memory and data sharing. 

These differences in computational needs mean that compromises must be met when purchasing 

new hardware. 

 

In addition, the different computational needs between bioinformatics and molecular dynamic 

applications can also be seen at the memory usage and I/O performance levels. Bioinformatic 

applications depend on access to large quantities of data and often load gigabytes of data into 

memory at once. In addition, in a distributed environment, the data must be shared across all 

nodes and each node must be capable of storing at least 30 gigabytes. Molecular dynamic 

applications have limited I/O and memory demands, only requiring on the order of 100 

megabytes. 

 

Dr. Elber identified several sites where there is room for improvement.  

 

1. Fault tolerance in a distributed environment: Although local, in house fixes have 

adequately met current needs, O/S level changes would be appropriate. 

2. Platform porting: With special care, code can be made portable, especially across 

alternative unix/linux flavors. Windows, however, presents additional challenges, 

especially with stability. 

3. Code management: Current code management tools have been found to be too 

restrictive in an academic setting and are convenient to use. Current applications have 

105-106 lines of code. 

4. Debugging tools: Productivity would improve with better debugging tools. 

5. Algorithmic:  Some machine learning tools manipulate matrices with 10^16 elements. 

There is little work being done to develop algorithms to manipulate very large data sets in 

a distributed environment. 
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A current growing concern in the biomedical community is the need to develop tools and 

theories dealing with the multiple temporal and spatial scales. One of the striking observations in 

dynamics of biological molecules is the extremely large time scale they covered. Initiation by 

light absorption of biochemical processes is very rapid (femtoseconds), while protein folding is 

slow (milliseconds to minutes). Current molecular dynamic approaches are restricted to 

nanoseconds (10-9 seconds). Multi-scale modeling must maintain the detail description at the 

molecular level but be capable of generating a description of macro-level biology. Even if 

computer performance increases by a factor of two each year, this will be outpaced by the 

tremendous advantages that can be obtained by working on theory and algorithms, which are 

capable increasing performance by a factor of millions. 

 

With an eye toward the future, Dr. Elber notes that current directions in bioinformatics will soon 

require that very large databases stored at multiple sites are able to be accessed, placing large 

demands on I/O and memory. Stability of systems, especially windows-based, will become a 

larger issue. Within five years, he would like to be able to access databases that are a factor of 

1000 times larger than currently in use. It will then be possible to begin to answer more 

challenging questions about the nature of the interaction between genetic changes at the 

molecular level and the environment. Researchers will be able to correlate protein structure and 

genomic information with the different observed phenotypes. This will allow us to gain a better 

understanding of the interaction among species and life on earth. 

 

3.3 Computational Protein Biochemistry Needs 
Interviewees 

 

John Yate, III, Ph.D. 

John Yates is a Professor of Cell Biology at the Scripps Research Institute, where he is director 

of the Proteomics Mass Spectrometry Lab. Tandem mass spectrometry is a powerful technique 

for characterizing a proteome. Proteomics by tandem mass spectrometry requires powerful 

informatics capabilities. 
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Giri Chukkapalli, Ph.D. 

Dr. Giri Chukkapalli received his PH.D in Mechanical Engineering at the University of Toronto, 

focusing his dissertation on developing weather models on parallel computers.  He is an assistant 

programmer/analyst at SDSC, where he is involved with several projects, including code (MPI) 

parallelization, the IBM SPII supercomputer, and research involving computational fluid 

dynamics.   

 

Ron Elber, Ph.D, Stanley Burt, Ph.D. (see Chapter 2: Bioinformatics)  

 

Requirements 

1. Hardware/software are needed to support the pipeline processing efficiently (other 

fields have similar needs, including climate modeling). Tools would include  

scheduling and checkpointing. Well-balanced hardware pipeline from archival 

storage to compute elements without bottlenecks and easily programmable FPGA 

coprocessor boards to handle integer and other DSP branch of the pipeline are 

needed. Hardware and software to handle the overlapped computation, 

communication and I/O would improve efficiencies. 

2. Efficient ANN and GA libraries similar to LAPACK would assist in code 

development and improve time to solve. 

3. To drive down the cost of I/O operations, copies of sequence databases are stored 

locally. The growth in size of sequence databases will eventually stress memory 

capabilities.  

4. The current algorithmic bottleneck in mass spec. analysis occurs in the initial pass 

through the sequence database to identify amino acid sequences that match the 

measured mass of peptides under consideration. More efficient search algorithms 

could increase productivity by a factor of 10 to 100. 

5. Space and cooling are significant cost factors for Beowulf clusters.  

6. Collaboration with other research institutes could be facilitated with higher bandwidth 

internet communications. Experience has shown that it is often faster to run an 

analysis on a mass spectrometer dataset on slower hardware than it is to ftp that same 

dataset to another site.  
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Computational protein biochemistry has become an important area of scientific research. 

Computational methods, such as Molecular dynamics simulation methods, continuum 

electrostatics and a variety of empirical solvation models, which were developed to solve 

problems in this field, have become widely used tools in physical biochemistry and structural 

biology. While enormous progress that has been made, a number of challenges have been 

elusive, for example the inability of existing methods to consistently predict the relative binding 

free energies of different substrates to the same protein or the conformation of loops which 

connect two fixed secondary structure elements. In the absence of a well-defined physical model, 

database mining suggests opportunities for computational biochemistry; statistical methods 

resulting from database mining of one type or another are the most of the successful in  

actual fold prediction to date. High productivity computing systems will hasten the day when the 

process of multiple sequence analysis, structural prediction, the design of combinatorial libraries 

and binding free energy calculations will be carried out in a single group by researchers who 

understand the intricacies of each of these problems.32 

 

 

Chapter 4: Computational Biology 
 
Computational Biology includes molecular modeling, tissue engineering, organ modeling and 

systems biology.  It is the development and application of data-analytical and theoretical 

methods, mathematical modeling and computational simulation techniques to the study of 

biological, behavioral and social systems.  
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Computational biology techniques can play an important role in countering bioterrorism.  Since 

these methods are used to determine structure-function relationships in proteins in order to 

understand the biological pathways, it also provides the tools to study the factors that lead to 

toxin formation and the interruption of such pathways, either for detection, prevention, 

remediation or health impacts. Computational approaches can be used for the rational redesign 

of enzymes to degrade chemical agents. An example is the enzyme phosphotriesterase (PTE), 

which could be used to degrade nerve gases. Combined experimental and computational efforts 

can be used to develop a series of highly specific PTE analogues, redesigned for optimum 

activity at specific temperatures or for optimum stability and activity in non-aqueous and low 

humidity environments or in foams, for improved degradation of warfare neurotoxins. It is also 

possible to use advanced computations to design more efficient therapeutic agents against the 

highly toxic phosphoester compounds such as the nerve warfare agents DFP, sarin, and soman 

and insecticides like paraoxon - Grand Challenges in Computational Structural and Systems Biology 

(DA Dixon, TP Straatsma, T. Head-Gordon – PNNL & LBNL) 

 

 

4.1 Molecular Modeling 
Molecular modeling includes biochemical analysis, protein binding/drug target evaluation, and 

dynamics of molecules.  Molecular modeling techniques are widely used in the chemical, 

pharmaceutical and agrochemical industries.  Molecular modeling techniques allow the 

simulation of systems of variable size, ranging from a few tens to millions of atoms.  The 

parameters which rule the reliability of the simulation reside on the accuracy in the definition of 

the inter-atomic potential and on the dimensions of the investigated system, since a higher 

accuracy usually corresponds to increased computational requirement which in turn limits the 

dimension of the system under study. 

 

A number of popular software packages for molecular modeling are available and used widely, 

including: 

 

• GAMESS programs for Ab initio Quantum Chemisty 

• GAUSSIAN programs for Ab initio Quantum Chemisty www.gaussian.com 
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• NWCHEM programs for Quantum Mechanics 

• CHARM programs for molecular mechanics http://yuri.Harvard.edu. 

• AMBER programs for molecular mechanical force field http://amber.ucsf.edu. 

• MOPAC/AMPAC programs for semi-empirical quantum mechanics. 

• MM2 program for molecular mechanics. 

 

A variety of modeling techniques have been developed over the years including: 

 

• Quantum Mechanical Methods. 

• Energy minimization. 

• Molecular dynamics-based techniques involving path-integral and Monte Carlo methods. 

• Molecular dynamics combined with electron density function theory. 

• Conformational analysis. 

• Cellular automata. 

• Lattice Boltzmann method33. 

 

In the following paragraphs, we present these modeling techniques in more detail. 

 

Quantum Mechanical Method 

Quantum mechanical (QM) methods are used to determine energy interaction potentials.  QM 

methods deal with the electrons in a system, so that large numbers of particles must be 

considered and the calculations are time-consuming.  Quantum mechanics explicitly represents 

the electrons in a calculation, and so it is possible to derive properties that depend upon the 

electronic distribution and to investigate chemical reaction in which bonds are broken and 

formed.  There are two major categories of quantum mechanical molecular orbital calculations: 

ab initio and semi-empirical methods.  The ab initio method uses the full Hartree-

Fock/Roothaan-Hall equations, without ignoring or approximating any of the integrals or any of 

the terms in the Hamiltonian.  Semi-empirical methods simplify the calculations, using 

parameters for some of the integrals and/or ignoring some of the terms in the Hamiltonian.  

Many different programs are available for performing ab initio calculations, the best known of 

these is the Gaussian series of programs. 
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An ab initio calculation [35, 36, 42, 48, 33] can be logically considered to involve two separate 

stages.  First, the one- and two-integrals are calculated.  This is computationally intensive.  In the 

second stage, the wavefunction is determined using the variation theorem.  In a traditional Self-

consistent Field (SCF) calculation all of the integrals are first calculated and stored on disk, to be 

retrieved later during the SCF calculation as required.  The number of integrals to be stored may 

run into millions and this leads to delays in accessing the data.  In direct SCF calculation, the 

integrals are not stored on the disk but are kept in memory or recalculated when required34  

 

Ab initio methods represent the higher level of description of the inter-atomic potential and 

allow, in principle, the exact solution of the Schrödinger equation without the introduction of any 

parameters. However, they usually offer a particularly unfavorable scaling with the dimensions 

of the system, O(M8), typical of many-body problems, which makes them applicable to systems 

composed by a limited number of atoms, usually of the order of 10–20. However, they can be 

extremely accurate, up to 0.5 kcal/mol, and are still successfully applied in the field of 

atmospheric chemistry and elementary chemical processes, in which high accuracies are needed. 

From a computational point of view, the most intensive tasks are represented by the analytic or 

numerical evaluation of 2-electron integrals, and integral transformations from an atomic orbital 

to a molecular orbital base.  Conventional algorithms require the storage on disk of an enormous 

amount of data, the semi-transformed integrals, of the order of tens of Gbytes, as well as large 

memory storage, bandwidth and latency. This class of applications can be defined as memory-

bound and is indeed bound to the efficiency of the memory access on a single processor; 

moreover, the extremely involved data connectivity, makes these algorithms difficult to 

implement on parallel machines requiring more and more efficient single CPUs.  

 

Energy Minimization 

Energy minimization is widely used in molecular modeling and is an integral part of techniques 

such as conformational search procedures.  Minimum energy arrangements of the atoms 

correspond to stable states of a system.  Energy minimization is also used to prepare a system for 

other types of calculations, for example it may be used prior to a Molecular Dynamic (MD) or 

Monte Carlo simulation.  Molecular mechanics minimizations are nearly always performed in 
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Cartesian coordinates where the energy is a function of 3N variables.  Mimina are located using 

numerical methods which gradually change the coordinates to produce configurations with lower 

and lower energies until the minimum is obtained.  Algorithms used include the simplex or 

steepest descents methods and the Newton-Raphson algorithm.  Systems containing thousands of 

atoms can require significant memory, and are usually solved using molecular mechanics 

methods. 

 

Force Field Methods 

Force field methods, also known as molecular mechanics, are used to perform calculations on 

systems containing significant numbers of atoms.  Force field methods ignore the electron 

motions (the focus of quantum mechanics) and calculate the energy of a system as a function of 

the nuclear positions only.  In some cases force fields can provide answers that are as accurate as 

even the highest-level quantum mechanical faction of the computer time.  Molecular mechanics 

is based on a simple model of the interactions within a system with contributions from processes 

such as the stretching of bonds, the opening and closing of angles and the rotations about single 

bonds.   

 

The interaction potential is usually expressed as the sum of apriori parameterized van der Waals 

and Coulombic contributions, the latter showing a quadratic scaling, O(M2), with the dimensions 

of the system (generally indicated with M), due to the double sum on the atomic effective 

charges. The maximum accuracy of this class of methods is typically of the order of 20 kcal/mol, 

usually too limited for the description of phenomena of chemical interest. However, FF-based 

methods, implemented according to the fast-multipole (FM) expansion of the Coulomb potential, 

have been applied to the approximate description of systems containing up to a few million of 

atoms and have found a wide success in the investigation of biological systems, surface science 

and material science (e.g. protein science, material fractures, liquid crystals). FF-based 

algorithms usually offer excellent scaling performances on massively parallel architectures. FM 

expansion of the Coulomb potential can be implemented in such a way as to reach a linear 

scaling with the dimensions of the system [22].  
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Density Functional Theory 

Density Functional Theory (DFT) only attempts to calculate the total electronic energy and the 

overall electronic density distribution.  DFT methods [39, 31, 19] usually offer an O(M3) scaling 

with the dimensions of the system, typical of direct diagonalisation techniques. More favorable 

scaling, of the order of M2logM, can be achieved by using a plane wave (PW) expansion as a 

basis set and pseudo-potentials (PP) for the description of core electrons [28]. The typical 

accuracy of these methods, of the order of 3-7 kcal/mol, makes them suitable to the study of 

chemical interesting problems, and DFT methods have been successfully applied to the 

investigation of chemical reactivity and complex material in systems composed by up to a few 

hundreds of atoms. Moreover, recent developments [24], include coupling the evaluation of a 

DFT potential to a classical molecular dynamics (MD) scheme, introducing time as a further 

degree of freedom to explore. The basic algorithmic features of DFT-based MD methods reside 

in the use of efficient fast Fourier transform (FFT) techniques to compute the different 

contributions to the total energy (kinetic energy, Coulomb, XC, PP) and its derivatives, the latter 

task being particularly computationally intensive. The large number of PWs, typically of the 

order of 105-106, necessarily translates in large memory requirements; moreover, the parallel 

implementation of this class of algorithms requires an extremely efficient communication 

network, due to the particular implementation of the parallel FFT which requires global data 

exchange. To give a measure of the memory and CPU requirements, a system composed by 350 

atoms can require up to 24 Gbyte of memory and, to be executed in a reasonable time, 32 IBM 

power 3 processors. This class of methods will therefore benefit from both increased computer 

power, communication and memory bandwidth, even if it will be probably limited to run on 

proprietary hardware, due to the reduced performances of COTS communication devices. 

Moreover, an adequate development of scientific libraries (FFT and linear algebra) is needed to 

retain high performance for this class of algorithms. 

 

Within the next years, DFT methods will probably allow the accurate computation of electronic, 

structural and dynamical reactive properties of systems containing 3000 (10000) atoms.   Based 

on this, DFT methods will substitute FF parameterizations in chemiometric applications, in 

which a large number of medium-size calculations is needed. This will have a direct impact in  

 



 
 

 39

pharmacology: “the design of a new drug usually requires a pre-selection operated by computer 

simulations and data analysis; the advantage of a much higher accuracy in the description of the 

investigated molecular systems and properties directly translates into a high selectivity of the 

target system with a significant reduction of the number of laboratory tests, up to a factor of 10.  

DFT methods will also allow the accurate simulation of small protein systems, or of realistic 

portions of them, with particular impact on the comprehension of the action mechanism of 

metalloenzymes, where a reduced model usually neglects the fundamental underlying 

interactions. To understand the importance of such a field, it is sufficient to mention that both 

respiration and photosynthesis involve metallo-organic active centres constituted by several 

thousand atoms; comprehension of the action mechanism of such systems will allow to device 

efficient synthetic bio-mimetic analogues of the natural systems, with a high impact in the field 

of energy storage and molecular sensors.  Moreover, we can predict that DFT-based methods 

will allow the accurate simulation of nano-scale systems with a high impact in the design of 

molecular engines, quantum computation devices and chemical storage of data [18].” 

 

Conformational Analysis 

The physical, chemical and biological properties of a molecule depend upon the 3D structures or 

conformations that it can adopt.  Conformational analysis is the study of the conformations of a 

molecule and their influence on its properties.35  A key component of a conformational analysis 

is the conformational search, which seeks to identify the preferred conformations of a molecule; 

this requires locating conformations that are minimum points on the energy surface.  The 

conformational search is concerned only with locating minimum energy structures. 

 

Evolutionary Algorithms and Simulated Annealing 

Evolutionary algorithms and simulated annealing have found widespread use in molecular 

modeling, including use in finding the global minimum energy conformation of a molecule, 

protein-ligand docking, molecular design, Quantitative Structure-Activity Relationships (QSAR) 

and pharmacophore mapping36. 
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Evolutionary algorithms (EA) are a group a methods based on ideas of biological evolution that 

are designed to find optimal solutions to problems.  There are three basic classes of evolutionary 

algorithm: 

 

 Genetic algorithms (GA) 

 Evolutionary programming (EP), and 

 Evolutional strategies (ES). 

 

All three are based on the concept of creating a ‘population’ of possible solutions to the problem.  

The members of the population are scored using a ‘fitness function’ that measures how ‘good’ 

they are.  The population changes over time and evolves towards better solutions.   

 

Genetic and Evolutionary Algorithms 

The main difference between the genetic algorithm and evolutionary programming is that the 

latter does not use a crossover operator.   Evolutionary strategies are very similar to evolutionary 

programming but differ in two key respects:  crossover operators are permitted and the 

probabilistic tournament is replaced with a straightforward ranking. 

 

Genetic and evolutionary algorithms involve a significant random element and so they are not 

guaranteed to produce the same global minimum energy conformation from each run.  They are 

useful for producing solutions very close to the global optimum in a reasonable amount of time.  

It is common practice to perform several runs in order to obtain a variety of different solutions 

and to investigate the nature of the energy surface. 

 

Simulated Annealing 

Simulated annealing is a computational method that mimics annealing, the process in which the 

temperature of a molten substance is slowly reduced until the material crystallizes to give a large 

single crystal.  The perfect crystal that is eventually obtained corresponds to the global minimum 

of the free energy.  Simulated annealing is used to find the optimal or best solutions to problems 

which have a large number of possible solutions. Simulated annealing is a general purpose 
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optimization algorithm.  It combines Markov-Chain Monte-Carlo methods (MCMC) ideas such 

as the Metropolis algorithm with a schedule for lowering temperature37.   

 

In simulated annealing a cost function takes the role of the free energy in physical annealing and 

a control parameter corresponds to the temperature.  To use simulated annealing in 

conformational analysis the cost function would be the internal energy.  At a given temperature 

the system is allowed to reach ‘thermal equilibrium’ using a molecular dynamics or Monte Carlo 

simulation.  At high temperatures the system is able to occupy high-energy regions of the 

conformational space and to pass over high energy barriers.  As the temperature falls, the lower 

energy states become more probable in accordance with the Boltzmann distribution.  At absolute 

zero, the system should occupy the lowest-energy state – the global minimum energy 

conformation.   To guarantee that the globally optimal solution is reached would require an 

infinite number of temperature steps, at each of which the system would have to come to thermal 

equilibrium.  Careful temperature control is required when the energy of the system is 

comparable with the height of the barriers that separate one region of conformational space from 

another.  This is often difficult to achieve in practice and simulated annealing cannot guarantee 

to find the optimal solution.  However, if the same answer is obtained from several different runs 

then there is a high probability that it corresponds to the true global minimum.  Several simulated 

annealing runs may enable a series of low-energy conformations of a molecule to be obtained. 

 

Clustering Algorithms and Pattern Recognition Techniques  

Molecular modeling programs generate large quantities of data that must be processed and 

analyzed.  Many conformations search algorithms can generate conformations that are very 

similar, if not identical.  Cluster analysis is used to select from the data a smaller, representative 

set of conformations for subsequent analysis.  A common use of cluster analysis is in selecting a 

set of representative molecules from a large chemical database. 

 

A cluster analysis requires a measure of the similarity between pairs of objects.  A large number 

of cluster algorithms are available. Hierarchical clustering involves a series of iterations at each 

which the two closest clusters are identified and combined into a larger cluster. These methods 

produce a clustering that is independent of the order in which the objects are stored.  Simple 
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implementations require an M X M similarity matrix to be calculated, limiting their applicability 

when clustering large data sets. The Jarvis-Patrick method is a non-hierarchical clustering 

method that uses a nearest neighbors’ approach.  The algorithm can be used to cluster very large 

data sets.  The K-means method is another non-hierarchical clustering method.   

 

4.2 Tissue and Organ Modeling 
Modeling of macromolecular interactions permits simulation of signal transduction into, across, 

and out of cells. With multi-cellular models, it is possible to investigate chemical and mechanical 

processes that occur in tissues, ranging from the relatively simple lipid bilayers that generally 

modulate intracellular chemistry to the much more complex assemblages that make up such 

tissues.  Molecules, cells, tissues--the next level of biological organization is that of the organ 

itself. Complex organ models attempt to take into account explicit organ geometry coupled to 

hydrodynamics, continuum mechanics, reaction-diffusion, radiation and discrete particle 

transport.  Organ modeling, while still in its infancy will be the springboard for detailed 

modeling of the body’s organs as a complete system. 

 

Organ modeling requires coupling of models and a system integration approach to coupling the 

models.   First the physical organization, from the molecule to the organ must be modeled.  Next 

the integration of functional models: chemical, mechanical, electrical, metabolic, and thermal. 

Then the models must be extended across broader scales of time and space. For example to 

model the heart, the anatomy and morphology of the heart need to be represented in the 

geometry and structure of the continuum mechanics model. The environmental influences need 

to be captured in the boundary conditions. The biological processes of mass transport, growth, 

metabolism, energetics, motion, flow, and equilibrium must be expressed through and must 

operate under the conservation laws for mass, energy, and momentum adopted in the model. 

Finally, structure-function relations need to be embodied in equations that take into account the 

material properties of the mechanical system. 

 

Tissue and organ modeling generally begins with converting biology image data into 

computational meshes. This requires reconstruction and animation of volumetric deformable 

objects.  In the scope of a medical application the goal is to simulate the motion and the form 
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alteration of the organ.  One current research goal is to develop better shape representations for 

the deformable structures found in biomedical image databases. A longer-term goal of this 

research is to build specialized, deformable organ shape models that learn the priors for a 

particular organ type.  Typically digital images are used to capture the organ detail. Then, mesh 

grid generation software is used to analyze the data and reconstruct it into a computer model.  

 

Organ Model Applications 

Applications include simulation of dynamic and deformable behavior of cancerous tissues and 

organs to be integrated in radiation dose evaluation.  A computational model of the 

cardiovascular system is aiding researchers in understanding the fundamental biochemical, 

biophysical, electrical and mechanical functions of the normal heart. The model is also 

advancing understanding of the molecular and genetic origins of heart disease, the electrical and 

mechanical properties of blood flow in large and small blood vessels; and the development of 

potential approaches for new cardiovascular drugs. A virtual lung model, developed at the 

Department of Energy’s Pacific Northwest National Laboratory (PNNL), may help predict the 

impact of pollutants on respiratory systems and provide new insights into asthma, as well as 

other pulmonary diseases38. Using the virtual respiratory tract, PNNL scientists can analyze the 

influence of various factors, such as the amount of pollutants or length of exposure, on healthy 

versus diseased lungs by manipulating the computer model. With the model they can begin to 

simulate how gases, vapors and particulates may act differently within lungs of people suffering 

from cystic fibrosis, emphysema and asthma.   

 
Heart Model Examples 

Heart models are the most advanced organ models.  Two leading models are discussed here:  the 

Peskin/McQueen model and the Cardiac Mechanics Research Group at University of California 

San Diego (UCSD) model.MetaCenter researchers Charles Peskin, David McQueen, and their 

group at the Courant Institute of Mathematical Sciences of New York University developed their 

heart model to help design improved artificial heart valves39.  Their 3D model combines tissue 

and fluid mechanics models and permits the examination of the performance of modeled 

artificial heart valves for any of the four valves of the human heart. To solve both the fluid 

mechanics and elasticity problems simultaneously they use the immersed boundary method with 
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formal second-order accuracy40.  This is essentially a second-order Runge-Kutta method.  The 

heart is modeled as a set of elastic fibers immersed in an incompressible fluid, which avoids the 

complexities of applying boundary conditions on the moving location of the heart walls. For 

greater realism, they try to make the model fibers follow the same paths as muscle and collagen 

fibers in the real heart muscle and valves. 

 
High resolution is also needed to make the Reynolds number (Re) realistic. To use a realistic Re 

for blood flow in the heart (about 500) requires a substantial refinement of the mesh, possibly by 

a factor of 25 in each spatial direction.  The flow pattern of blood in the heart is not very 

sensitive to the Reynolds number, and improvements in numerical methodology, such as local 

mesh refinement near boundaries or the use of entirely grid-free methods, may make it possible 

to avoid the extreme computational requirements implied by such a refinement of a uniform grid. 

Nevertheless, a fully satisfactory computation of blood flow in the heart will require a substantial 

increase in computer power, Peskin says--possibly as great or greater than the increase that was 

needed to move from two to three dimensions.  

 

Increased computer power is needed not only to do the current computation more correctly, but 

also to bring in additional phenomena that are highly relevant to blood flow in the heart. Two 

examples of such phenomena are the electrical activity that coordinates and controls the 

heartbeat and the dynamics of the blood clotting process, which is important in evaluating the 

function of prosthetic cardiac valves. Models of these phenomena are being developed separately 

from the model of cardiac mechanics described here. Microscopic and macroscopic models of 

the clotting process are being developed by Aaron Fogelson, a former student of Peskin's now at 

the University of Utah. Ultimately, Peskin and McQueen hope to combine such models with 

their mechanical model to increase its realism and predictive power. Again, a dramatic increase 

in computer power would be required.  

 

The model’s major algorithm and approaches are:  the immersed boundary method; Navier-

Stokes equations solved on cubic lattice through the use of FFT representations of the velocity 

and pressure; fiber equations solved on Lagrangian framework; and interface equations that 
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allow for a projection of the fiber forces onto the fluid lattice through a "smooth" delta function 

and interpolation of the fiber nodal velocities from fluid lattice.41 

Modeling the heart presents many challenges.   Beyond the usual difficulties of modeling fluid 

flows within rigid boundaries, the heart walls and heart walls and valves move and interact with 

the flow, both driving and responding to it. And not only is the heart muscle elastic, it is active--

contracting and relaxing, with elastic properties that change during the contraction-relaxation 

cycle.  

 

Katherine Yelick, a computer scientist at UC Berkeley, is leading a NPACI alpha project to 

make a generic immersed boundary code that will run on distributed parallel machines42.  This 

NPACI alpha project is working toward an end-to-end demonstration of how a modern parallel 

language and compiler, Titanium, running on Blue Horizon with improved equation solvers and 

algorithms for handling adaptive computational grids, can support an important scientific 

application--simulating blood flow in the human heart. Yelick is porting the Titanium language, 

which provides greater support for parallel computing, to Blue Horizon, as well as porting the 

immersed boundary code to Titanium and developing scalable solver technology for uniform 

grids.43 Colella is developing improved algorithms for handling adaptive computational grids, 

particularly for flows modeled by the immersed boundary method. Baden is developing 

communication support based on Kernel Lattice Parallelism (KeLP) for grid-based computation 

on Blue Horizon. Saltz is hardening the Titanium front-end for the Active Data Repository 

(ADR) storage facility to handle the immense data sets generated in the realistic simulations. 

Peskin identifies intelligent adaptive mesh algorithms that will "zero in" as the flow evolves 

during the simulation on the computationally challenging areas where the flow is more complex, 

such as near the delicate valve leaflets, as a critical requirement. 

 

As with all the above methods that use computational meshes, the Cardiac Mechanics Research 

Group (CMRG) Department of Bioengineering and the Whitaker Institute for Biomedical 

Engineering at UCSD  http://cmrg.ucsd.edu/ heart model integrates structure and function as well 

as theory and experiment by means of the finite element method (FEM). The group uses a 

prolate spheroidal coordinate system to accurately represent both the compact shape and muscle 

fiber architecture of the heart's muscle walls.  Various parameters, derived from laboratory 
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research, are introduced to the continuum model for comparative study. For instance, the CMRG 

members are working with both anatomic elements from rabbit hearts which have been 

histologically processed, and sections revealing the orientations of the muscle fibers. A second 

project relates to the differences in heart muscle structure between normal and brittle-boned mice 

suffering from osteogenesis imperfecta (OI) because of a deficiency in the protein collagen. The 

finite element models showed that OI mice develop variations in the residual stresses and muscle 

fiber structure which constitute beneficial adaptations to the deficiency of collagen. 

 

As far as the human heart is concerned, the CMRG investigators study the relationships between 

the cellular and tissue structure of the ventricular myocardium as well as the mechanical and 

electro-physiological function of both the intact and affected organ. In ongoing projects, the 

mechanisms of ventricular mechano-electric feedback, the alterations during ventricular 

hypertrophy, and the flow-function relations during myocardial ischemia are unveiled. In 

collaboration with the Cleveland Clinic Foundation and the University of Auckland in New 

Zealand, the researchers in the Cardiac Mechanics Research Group explore the potential of a 

revolutionary surgical method for patients with severe heart failure. Through the combination of 

computational modeling with magnetic resonance imaging, the research is to predict which 

patients effectively can be rescued, using surgical ventricular reduction. 

 

In an effort that includes applications of bioinformatics, the CMRG supports Continuity 5.5 a 

computational tool for continuum problems in bioengineering and physiology, especially those 

related to cardiac mechanics and electrocardiology research. In addition to continuum modeling, 

Continuity 5.5 has facilities for least-squares fitting of parametric models to experimental 

measurements from diverse sources including gross anatomy, histomorphology, 3-D medical 

imaging, and physiological and biomechanical testing. Continuity 5.5 is component-based using 

a very high-level object-oriented scripting language for component integration. Executables for 

Continuity 5.5 can be downloaded free from the group’s website for academic research purposes. 

http://cmrg.ucsd.edu/cgi-bin/cmrg/downloads/selection.cgi. 
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4.3 Systems Biology 
Systems biology aims at system-level understanding of biological systems.  Molecular biology is 

mainly focused on identification of genes and functions of their products, which are components 

of the system.  The next major challenge is to understand at the system level biological systems 

that are composed of components revealed by molecular biology44.  The goal is to understand 

biological systems within a consistent framework of knowledge built up from the molecular level 

to the system level.  Understanding biology at the system level – not only gene networks, but 

also protein networks, signaling networks, metabolic networks and specific systems such as the 

immune system or neuronal networks will be a major driver of HPCS requirements in the 

coming years. Understanding biological systems requires: 

 

• Identification of the structures of the system – primarily regulatory relationships of genes 

and interactions of protein that provide signal transduction and metabolism pathways, as 

well as the physical structure of organisms, cell, organelle, chromatin and other 

components.  Both the topological relationship of the network of components as well as 

parameters for each relation needs to be identified.  Identification of gene regulatory 

networks for multicellular organisms is even more complex as it involves extensive cell-

cell communication and physical configuration in 3-D space. 

• Analysis of system behavior – once a system structure is identified, its behavior needs to 

be understood 

• A method to control the state of biological systems 

• Design of biological systems with the aim of providing cures for diseases 

 

Simulations need to be able to simulate gene expression, metabolism and signal transduction for 

a single and multiple cells.  The simulations must be able to simulate both high concentrations of 

proteins that can be described by differential equations and low concentrations of proteins that 

need to be handled by stochastic process simulation.  Some efforts on simulating a stochastic 

process (McAdams and Arkin, 1998) and integrating it with high concentration level simulation 

are underway.  In some cases the model requires not only gene regulatory networks and 

metabolic networks, but also high-level structures of chromosomes such as heterochromatin 

structures. 
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The simulations need to be coupled with parameter optimization tools, a hypothesis generator 

and a group of analysis tools.  The algorithms need to be designed precisely for biological 

research.  For example, the parameter optimizer needs to find as many local and global minima 

as possible because there are multiple possible solutions of which only one is actually used.  The 

assumption that the most optimal solution is used in an actual system does not hold true in 

biological systems.  The tools and analysis required are: 

 

• A database for storing experimental data 

• A cell and tissue simulator 

• Parameter optimization software 

• Bifurcation and systems analysis software 

• Hypotheses generator and experiment planning advisor software, and 

• Data visualization software 

 
Systems Biology Computing Overview 

Cell biology is difficult to handle computationally.  Cell signaling, cell motility, organelle 

transport, gene transcription, morphogenesis and cellular differentiation cannot easily be 

accommodated into existing computational frameworks.  Conventional approaches using the 

numerical integration of continuous, deterministic rate equations can provide useful when 

systems are large or when molecular details are of little importance.  However when the 

resolution of experimental techniques increases, conventional models become unwieldy.  

Difficulties include the importance of spatial location within the cell, the instability associated 

with reactions between small numbers of molecular species and the combinatorial explosion of 

large numbers of different species.  For example, signaling pathways commonly operate close to 

points of instability and frequently employ feedback and oscillatory reaction networks that are 

sensitive to the operation of small numbers of molecules.  Gene transcription is controlled by 

small assemblies of proteins operating in an all-or-none fashion, so that whether a specific 

protein is expressed or not is to some extent a matter of chance45. Stochastic methods are being 

used.  The idea is to represent individual molecules rather than the concentrations of molecular 

species and to apply Monte Carlo methods to predict their interactions.   In the stochastic 
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modeling approach, rate equations are replaced by individual reaction probabilities and the 

output has a physically realistic stochastic nature. Techniques are available by which large 

numbers of related species can be coded in an economical fashion and key concepts such as 

signaling complexes and heat-driven flipping of protein conformations can be embodied in the 

program46. (Shimizu and Bray, p. 215).   

 

Systems Biology Analysis Methods 

Commonly used analysis methods for systems biology are bifurcation analysis, metabolic control 

analysis and sensitivity analysis.  The ERATO Systems Biology Workbench project is to create 

an integrated software environment that permits sharing of models and resources between 

simulation and analysis tools for systems biology.  The initial focus in on achieving 

interoperability between seven leading simulation tools: BioSpice47 DBSolve48, E-Cell, Gepasi49 

Jarnac50, StochSim51, and Virtual Cell52.  As part of the effort, the project has also developed a 

model description language, the Systems Biology Markup Language (SBML) that can be used to 

represent models in a form independent of any specific simulation/analysis tool. SBML is a 

versatile and common standard that enables the exchange of data and modeling information 

among a wide variety of software systems53.  It is an extension of XML, and is expected to 

become the industrial and academic standard of the data and model exchange format. 
At a very abstract level, a cell can be divided into two general subnetworks, a regulatory network 

and a metabolic network54.  These networks possess very different characteristics.  The 

metabolic network is mainly occupied with substance transformation to provide metabolites and 

cellular structures.  The regulatory network’s main task is information processing for the 

adjustment of enzyme concentrations to the requirements of variable internal and external 

conditions.  This network involves the use of genetic information.   

The Virtual Laboratory uses a process modeling tool PROMOT, originally designed for 

application in chemical engineering.  It allows for the computer-aided development and 

implementation of mathematical models for living systems55.  For the numerical analysis of the 

resulting models the simulation environment DIVA56 is used.  DIVA deals not only with large-

scale differential-algebraic systems which arise in chemical process engineering but also in the 

mathematical modeling of complex cellular networks. Inside DIVA many different numerical 

computations can be performed based on the same model, including dynamic and steady state 
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simulation, parameter estimation, optimization and the analysis of nonlinear dynamics.  There 

are currently four methods of special interest for cellular models: 

 

• Dynamic simulation of the models with different integration algorithms. 

• Sensitivity analysis for parameters with respect to experimental data. 

• Parameter identification according to experimental data. 

• Model-based experimental design. 

 
Most numerical algorithms in DIVA are taken from professional numerical libraries like 

HARWELL and NAG.  The system also has additional methods like steady state continuation 

and bifurcation analysis.  The visualization and postprocessing are done using MATLAB. 

Stochastic modeling is an approach to modeling phenomena such as intracellular signaling and 

gene expression. The conventional approach of representing biochemical reactions by 

continuous, deterministic rate equations cannot be easily applied to intracellular processes based 

on multiprotein complexes or those that depend on the individual behavior of small numbers of 

molecules57. Two stochastic approaches are STOCHSIM and the Gillespie approach58. 

 

Software packages that allow kinetic performance of enzyme pathways to be represented and 

evaluated quantitatively: (flux-analysis programs, often aided by metabolic control analysis) are 

GEPASI, MIST59, and SCAMP60.   

Software suites for the recording and analysis of electrical data, the simulated performance of 

individual axons and the investigation of networks or nerve cells (neurobiology and cortical 

activity), are: GENSIS61 and NEURON62. 

 

4.4 Computational Biology Case Study: The Cardiac Mechanics Group at 

UCSD 
We spoke with Dr. Taras Usyk and Sarah Healay. Dr. Taras Usyk is an Assistant Project 

Scientist and Sarah Healy is an advanced graduate student. Both are researchers in the Cardiac 

Mechanics Group directed by Andrew McCulloch. Andrew McCulloch is Professor of 

Bioengineering at the University of California San Diego. He is also a member of the Whitaker 

Institute of Biomedical Engineering, the UCSD/Salk Institute for Molecular Medicine and the 
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Center for Research in Biological Structure, a Senior Fellow of the San Diego Supercomputer 

Center, and Director of the BioNOME Resource at the San Diego Supercomputer Center. Dr. 

Usyk and Sarah Healy collaborate on structurally and functionally integrated numerical models 

of cardiac electromechanics using the finite element method. Their goal is to perform whole 

organ simulations with biophysically detailed systems models involving over a hundred thousand 

degrees of freedom.  

 

The members of the Cardiac Group shared some the computational demand associated with 

modeling the heart mechanics and electro-physiology using finite element methods. 

Electrophysiological models of the heart require small temporal and spatial scales, determined by 

the system of ODEs that comprise the cellular model. An operator splitting algorithm allows 

ODE and PDE systems to be solved separately with updates occurring every half timestep. Of 

these, the ODEs dominate with 90-95% of compute time being spend on them. However, this 

system is also data parallel and is where they are focusing their efforts. An example of an 

electrophysiological model that incorporates a mere 2x1x0.5 cm3 volume of the heart ventricle 

uses 1024 finite elements in a tricubic spline approximation; state variables are evaluated at over 

10,000 points in the volume. This represents 1/24th of the whole rabbit ventricle.  

 

The finite element code currently requires 300 Mbytes of memory to run; about 250 Mbytes are 

used by the linear solver and the rest for the input file. Memory requirements scale roughly 

linearly with the mesh size. The code is written in a combination of python and Fortran, with the 

use of a linear solver written in C. It currently takes 10 hours to solve the wedge mesh to 1 

second, with a time step of 0.1 ms on a single processor Pentium 4 running Linux. They would 

expect close to linear speedup on a parallel machine.       

 

The mesh size for mechanical models of the heart is determined by the ability of solvers to 

converge to stable solutions. While mechanical models typically require a fraction of the number 

of mesh points that electrophysiological models require, they have larger memory requirements, 

requiring 4-5 Gbytes. This presents a problem when running on machines that have 2-4 Gbytes 

of memory; it often means simplifying components of the model.  
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The Cardiac Group runs simulations a heterogeneous coding and system environment. For 

example, they currently embed non-native code into a code base, for example embedding Fortran 

into Python. This introduces technical issues with latency and compile efficiency. There is 

latency associated with handoff of I/O operations. Native and non-native code has to be 

compiled and debugged separately. 

 

The members of the Cardiac Group come from various backgrounds, mainly in the biological 

sciences. They identified tools that would assist them improve their productivity in an intensive 

computational environment with limited formal coursework in the computer sciences. 

Productivity could be drastically improved with is better debuggers and standard options on 

compilers. Relying on “print” statements for debugging is time consuming. O/S stability is also 

an issue. Some versions of linux are more likely to crash than others. Productivity could be 

increased if there where better strategies for dealing with multiple users vying for the same 

memory. Currently, users are simply kicked off when too many users are on client/server 

systems. This results in loss of data and time. 

 

There was a general consensus that demand for more computing power will never saturate. 

Currently, heart simulations run for only several to a couple of heart beats. Increased 

computational power will allow researchers to run to simulate minutes instead of seconds, using 

more accurate models and including pathologies and cellular level information to gain more 

robust information about heart function.   

 

4.5 Computational Biology Needs 
Interviewees 

 

Taras  Usyk, Ph.D. and Sarah Healy 

Dr. Taras Usyk is an Assistant Project Scientist and Sarah Healy is a 3rd year graduate student. 

Both are researchers in the Cardiac Mechanics Group directed by Andrew McCulloch. Dr. Usyk 

and Sarah Healy collaborate on structurally and functionally integrated numerical models of 

cardiac electromechanics using the finite element method.  
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Adam Arkin, Ph.D. 

Adam Arkin is an Assistant Professor of Bioengineering at the University of California, 

Berkeley. He is also a Faculty Scientist in Physical Biosciences at the Lawrence Berkeley 

National Laboratory.  He is one of the central developers of BioSPICE and the director of the 

Virtual Institute of Microbial Stress and Survival (http://vimss.org).  

 

James B. Bassingthwaighte, Ph.D. 

James Bassingthwaighte is a Professor in the Department of Bioengineering at the University of 

Washington. He is the director of the National Simulation Resource Facility for Circulatory 

Transport and Exchange. NSR was created with a focus on studying complex biological systems 

and networks involved in the transport and exchange of solutes and water in the 

microvasculature, within whole organs, and within the whole body.  

 

Steinar Hauan, Ph.D. 

Steinar Hauan is a Professor of Chemical Engineering in the Biomedical Engineering 

Department at the Carnegie Mellon University.  Professor Hauan's research is in the area of 

computer-aided process design and analysis of complex chemical systems.  

 

Juan Cebral, Ph.D. 

Juan Cebral discussed the research he and the research team including Rainald Loehner, and 

Orlando Soto, George Mason Univ.; and Peter L. Choyke and Peter J. Yim, National Institutes of 

Health.  The application he discussed is an image-based finite element model of hemodynamics 

in stenose carotid, a methodology to construct patient-specific, anatomically and physiologically 

realistic finite element models of blood flows.   

 

 

Requirements 

1. Computational approaches that apply asynchronous agents that collaborate to arrive at 

a solution to complex problems are often multi-threaded and require the development 

of distributed algorithms without central control of agents and complex adaptive 

systems to monitor CPU time. 
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2. There are holes in existing algorithms that handle remote processes; current RPC code 

is not robust enough. Current versions of MPI are not fault tolerant and do not scale 

well to grid processing. MPI was not designed to be fault-tolerant for asynchronous 

system; rather, it was implemented to enforce synchronization and would thus never 

get (or need) the type of redundancy and fault tolerance necessary for large scale, 

asynchronous processing. Management tools are needed in a distributed environment to 

recover, or at least ignore, failures in communication. 

3. Compiler speed and CPU types compare differently for different systems. There is no 

correlation between compilers and applications. The work done per cycle on the same 

hardware varies with compilers. Speed and performance varies across systems and 

compilers. It would help if someone had a benchmark library for different types of 

calculations. This would enable users to better evaluate what machines they should 

purchase and use, based on their specific applications.  

4. A considerable amount of time is spent compiling code and it is often easier to 

reproduce code rather than re-use code written by another researcher using a different 

compiler. Compile time could be reduced drastically by designing compilers that are 

efficient across platforms but compile code from anywhere without library 

dependencies or with very well defined and packaged library dependencies. Code 

diagnostic tools need to be updated. Code has become sufficiently complicated that a 

real tool to for designers and project managers to visualize large coding projects would 

improve productivity. 

5. Two important classes of algorithms that will play a large role in biomedical research 

are finite element code and density functional calculations. It will be important to lower 

the barrier for researchers to use these tools and provide parallelized version of existing 

code. 

6. PDE optimization will require algorithms with improved performance. There is a need, 

however, to integrate PDE based optimization with logic based optimization and to 

move this integration to large, complex systems. 

7. Cellular processes take place on many time scales; different reactions have different 

characteristic rates. Including cellular mechanics introduces another set of times scales. 

Algorithm development and formal abstraction will probably be the most important 
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aspect of dealing with simulations involving multiple time scales. New algorithms 

should both be able to separate slow and fast time scales, with well-understood and 

defined approximation errors, and be numerically stable. Multi-scale models are 

extremely complex. They incorporate information from the molecular and cellular 

levels up to organ and systems levels. Realistic models of the circulatory and 

respiratory systems under stress, for example exercise, require a description of the 

cellular events that create demands for oxygen. Having cellular level equations together 

with circulatory exchanges makes the system very stiff. Brute force methods are 

possible, but computationally demanding. It is equally challenging, however, to 

simplify models by using the results from the cellular level as descriptors to drive the 

higher level equations; changes at the higher level, for example start and stop of 

exercise, must be communicated back to the basic model. The development of 

strategies to automate the switching from the simplified submodels to the more detailed 

realistic submodels is critical to the designing of efficient yet realistic models that 

encompass several hierarchical levels. 

8.While there have been several attempts, there is still no good visualization tools for 

large scale, high dimensional data sets. An interesting challenge for researchers is to 

develop tools to represent complex chemical networks. Such tools might allow 

researchers to visualize network behavior and to map networks and their products, 

providing information about the state of the system as parameters are changed. 

9. Parallelization of molecular dynamic code and simulations of reaction/diffusion 

processes is challenging because although there is a maximum diffusion within a time 

step (and there are hundreds of thousands of time steps), it is not possible to know how 

many molecules will enter from nearby processors.  Processor boundaries introduce 

uncertainties in handling communications and the need to detect termination. Key 

requirements: random number generators; vastly improved reliability of systems; tools 

to support load balancing. 

10. Embedding non-native code into a code base, for example embedding Fortran into 

Python, introduces technical issues with latency and compile efficiency. There is 

latency associated with handoff of I/O operations. Native and non-native code has to be 

compiled and debugged separately.  
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11. O/S stability is an issue. Some versions of linux are more likely to crash than others. 

Productivity could be increased with better strategies for dealing with multiple users 

vying for the same memory. Currently, users are simply kicked off when too many 

users are on client/server systems. This results in loss of data and time.  

 

Computational biology—the unique mix of molecular biology and computer science—has come 

of age in recent years, earning status as a scientific discipline in its own right. As part of an effort 

to accelerate medical discovery to improve health, NIH has funded several centers focused on 

aggressively pushing the boundaries of current computational needs. These centers will focus on 

Physics-based simulations of biological processes, analysis and visualization of medical image 

data, scalable computational and organizational framework for conducting clinical research, and 

computational and mathematical approaches to the study of genes, cells, systems and whole 

brain. The domain of computational biology can be considered a set of overlapping atlases - sets 

of maps on different spheres of biological information that span many scales and modalities from 

genotype to phenotype. The concept of computational atlases can be understood as a database-

like infrastructure that rests on mathematical advances in modeling and optimization. As the 

infrastructure for such a computational atlas is developed, it will be possible to begin to address 

large-scale modeling problems that before now have been intractable. 

 

 

Chapter 5: Drug Discovery 
 
Discovering and developing any new medicine is a long and expensive process.  A new 

compound must not only produce the desired result with minimal side-effects but must also be 

demonstrably better than existing therapies.  Typically, the two key steps in drug discovery 

programs are the identification of “hit” molecules and lead series, or “leads”.  A hit is a molecule 

that has some reproducible activity in a biological assay.  A lead series comprises a set of related 

molecules that usually share some common structural feature and which show some variation in 

the activity as the structure is modified.  This provides confidence that further synthetic 

modification to the lead series has a good chance of resulting in a drug candidate with the desired 

potency and selectivity, lack of toxicity and appropriate characteristics to enable it to reach its 
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target in vivo.  Such a drug candidate will then enter the early stages of development, where 

further large-scale investigations are undertaken. 

 

5.1 Drug Discovery Overview 
Although high-throughput screening makes it possible in principle to test every available 

compound against every biological assay, there are number of practical reasons why this is not 

feasible: 

• The large number of samples now available in many companies means that the overall 

expense can be significant 

• Some assays cannot be converted to a high-throughput format and so have to be 

conducted using more traditional technique 

• A significant proportion of the available samples might not be considered appropriate 

structures.  

As a result, it is often necessary to identify subsets of compounds.  Computational techniques 

play a significant role in determining which such subsets can be constructed, with various 

techniques being available depending upon the type of molecule to be screened, the 

information available to assist with the selection and the properties to be taken into account.   

 

A wide variety of methods are used either individually or in combination to select compounds.  

2-D methods use only information about the chemical structure of the molecule.  3-D methods 

use information about the molecules confirmation and properties dependent upon the 

confirmation.  Some methods take into account information about the target protein or about 

other molecules that are known to be active at the target, whereas other methods are designed to 

produce diverse collections of compounds for more general screening. 

 

Having tested a number of compounds, a model is usually constructed that relates the observed 

activity to the molecular structure.  The model can then be used in the next iteration of the 

process.  Many different kinds of models are used.  A popular approach is to use statistical 

techniques to derive the model. 
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Substructure Searching 

Substructure searching is the most basic approach to identifying compounds of interest.  Many 

organizations maintain databases of chemical compounds; some are non-proprietary and some 

are proprietary.  A database may consist of large numbers of compounds, several hundred 

thousand is common.  The American Chemical Society database contains more than 18 million 

compounds.63  Most systems represent molecules as molecular graphs.  A graph contains nodes, 

which are connected by edges.  A subgraph is a subset of the nodes and edges of a graph.  A key 

requirement for any chemical database system is that it can determine whether or not a new 

molecule is already present in the systems.  A substructure search retrieves all the molecules 

from the database that contain the substructure.  Substructure searching is known as subgraph 

isomerism – determining whether one graph is entirely contained within another.  Even with the 

most efficient algorithms this is a relatively time-consuming process and so chemical database 

systems commonly use some form of screening method to rapidly eliminate molecules that 

cannot match the query.  Such screens are frequently implemented using binary representations 

and so operate rapidly, especially if held in memory.   

 

Binary Screening 

Two types of binary screening are used.  In a structural key, each position in the bitstring 

corresponds to a particular substructure.  If that substructure is present in the molecule, then the 

relevant bit in the molecule’s key is set to 1.  A predefined fragment dictionary is used to specify 

the substructures.  As each molecule is added to the database a substructure search is performed 

for each fragment and the relevant bit assigned.  Many different types of substructure can be 

incorporated, such as the presence or absence of particular elements, rings and common 

functional groups.  It is also possible to assign bits which encode how many occurrences of a 

particular feature exist.  Structural keys used by the MACCS and Isis systems from Molecular 

Design are the best know of this type of bitstring. 

 

Hashing fingerprint is a second commonly used type of binary screening, and does not require a 

predefined fragment dictionary; it uses an algorithmic approach to derive the bitstring.  The 

Hashing fingerprint method produces all possible linear paths of connected atoms through the 

molecule containing between 1 and a pre-defined number of atoms.  Each path defines a pattern 
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of atoms and bonds which serves as the input to a pseudo-random number generator, which 

produces a set of bits which are then set to the value 1.  The hashing process typically sets 4 or 5 

bits per pattern.  A bitstring might contain 1024 bits and after all paths have been examined a 

typical organic, drug-like molecule might have a total of 200-300 bits set to 1.  Hashed 

fingerprints are used in a number of database systems and are particularly associated with the 

systems from Daylight Chemical Information Systems. 

 

When using a bitstring screen, one first calculates the corresponding bitstring for the substructure 

query.  Next, the query bitstring is compared with the bitstrings for all the molecules in the 

database.  A molecule can only possibly match the query if it contains a 1 for every position in 

the bitstring where the query also has a 1. Well-designed screens can eliminate up to 99% of the 

molecular during this phase.  After eliminating molecules that could not match the query, an 

atom-by-atom search for the molecules in conducted.  One commonly used method is the 

Ullmann algorithm which represents the molecular graphs of both the query substructure and the 

potential molecular match by an adjacency matrix, which is a square, symmetric matrix such that 

the element (ij) has the value 1 if atoms i and j are bonded, and zero otherwise.  The Ullmann 

algorithm tries to find matrices A such that A(AM)T is identical to S, where M is the adjacency 

matrix of the molecule and S is the adjacency matrix of the substructure64. 

 

Database Searching – Conformational Properties and Functionality Features 

A 3D database search allows one to identify molecules that satisfy the chemical and geometric 

requirements of the receptor.  A 3D database contains information about the conformational 

properties and functionality features of the molecules contained within it.  There are two general 

types of 3D database searches.  The choice of which to use depends on the information available 

about the target receptor.  Pharmacophore mapping is used when an experimental structure of the 

target macromolecule is not available.  Once a pharmacophore has been developed, it can then be 

used to find or suggest other active molecules. A pharmacophore refers to a set of features that is 

common to a series of active molecules.  Such features are referred to as pharmacophoric groups, 

functional groups or molecules with similar physical and chemical properties such that they 

produce generally similar biological properties65,66 [Thornber 1979; Patani and LaVoie 1996].  A 

3D pharmacophore specifies the spatial relationship between the groups.  These relationships are 
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often expressed as distances or distance ranges but may also include other geometric measures 

such as angles and planes. 

 

There are two problems to consider when calculating 3D pharmacophores.  First, unless the 

molecules are all completely rigid, one must take account of their conformational properties.  

The second problem is to determine which combinations of pharmacophoric groups are common 

to the molecules and can be positioned in a similar orientation in space.  More than one 

pharmacophore may be possible.  Some algorithms can generate hundreds of possible 

pharmacophores, which must then be evaluated to determine which best fits the data. 

 

Constrained Systematic Search 

Constrained systematic search address the problem of determining conformations in which the 

inhibitors can position multiple pharmacophoric groups in the same relative position in space.  

The constrained systematic search method of Dammkoehler, Motic and Marshall67 showed that it 

is possible to determine what torsion angles of the rotatable bonds will enable conformations 

consistent with the previous results to be obtained. 

 

Ensemble Distance Geometry 

Ensemble distance geometry can be used to simultaneously derive a set of conformations with a 

previously defined set of pharmacophorics groups overlaid.  Ensemble distance geometry uses 

the same steps as standard distance geometry with the special feature that the conformation 

spaces of all the molecules are considered simultaneously68. 

 

Clique Detection Methods 

It may be difficult to identify all possible combinations of the functional groups when many 

pharmacophoric groups are present in the molecule.  Clique detection algorithms can be applied 

to a set of precalculated conformations of the molecules.  Cliques are based upon the graph-

theoretical approach to molecular structure.   A clique is defined as a maximal completely 

connected subgraph.  Find the cliques in a graph in NP-complete.  Many algorithms have been 

devised for finding cliques, including the method of Bron and Kerbosch69.  The algorithm can be 

described as: 
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• Generate a family of low-energy conformations for the molecules 

• Use the molecule with the smallest number of conformations as the starting point 

• Use each of its conformations in turn and the reference structure 

• Compare each conformation of every other molecule with the reference conformations 

and the cliques identified 

• Obtain the cliques for each molecule by combining the results for each of its 

conformations 

• Combine those cliques that are common to at least one conformation from each molecule 

to give a possible 3D pharmacophore for the entire set 

 

Maximum Likelihood Method 

The maximum likelihood method eliminates the need for a reference conformation, effectively 

enabling every confirmation of every molecule to act as the reference.  The algorithm scales 

linearly with the number of conformations per molecule, thus enable a large number of 

conformations to be handled.70  The algorithm can be described as follows: 

 

• Generate a set of conformations for each molecule 

• Consider all possible combinations of pharmacophore features exhaustively 

• Identify possible geometric arrangements of the features ins 3D space 

• Score and rank according to how well the configuration describes the set of active 

molecules 

 

5.2 Molecular Docking 
Molecular docking attempts to predict the structure of the intermolecular complex formed 

between two or more molecules.  Most docking algorithms are able to generate a large number of 

possible structures, and so they also require a means to score each structure to identify those of 

most interest.  The docking problem involves many degrees of freedom.  There are six degrees of 

translational and rotational freedom of one molecule relative to the other as well as the 

conformational degrees of freedom of each molecule.   
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Various algorithms have been developed to tackle the docking problem and can be characterized 

by the number of degrees of freedom they ignore.  The simplest algorithms treat the two 

molecules as rigid bodies and explore only the six degrees of translational and rotational 

freedom.   

 

To perform conformationally flexible docking the conformational degrees of freedom need to be 

taken into account.  All of the common methods for searching conformational space have been 

incorporated at some stage into a docking algorithm.  Monte Carlo methods have been used to 

perform molecular docking, often in conjunction with simulated annealing.71  Genetic algorithms 

can also be used to perform docking72, as well as distance geometry.  An approach that is used by 

a number of programs involves the incremental construction of the ligand73.  A typical 

incremental construction algorithm first identifies one or more base fragments within the ligand.  

The base fragments are docked into the binding site and may then be clustered to remove similar 

orientations.  Each docked orientation of the base fragment(s) then represents the starting point 

for the conformational analysis of the rest of the ligand. 

 

The ideal docking methods would allow both ligand and receptor to explore their conformational 

degrees of freedom.  Molecular dynamics simulation of the ligand-receptor complex is one way 

to do this.  However such calculations are computationally very demanding and typically used 

for refining structures produced using other docking methods. 

 

Most docking algorithms generate a large number of potential solutions.  Some of these can be 

rejected immediately because they have a high-energy clash with the protein.  The rest are 

assessed using some scoring function.  Many of the scoring functions attempt to approximate the 

binding fee energy for the ligand biding to the receptor. Molecular mechanics is also widely used 

to calculate the energy of interaction.  The calculation can be speeded up by pre-calculating 

electrostatic and van der Waals potentials on a regular grid that covers the binding site.  The 

computational effort required to calculate the energy of interaction between ligand and protein is 

then linear in the number of atoms in the ligand, rather than being proportional to the product of 

the number of ligand atoms multiplied by the number of protein atoms.74   Combining the results 
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from more than one scoring function has been shown to give better results than using individual 

scoring functions on their own, an approach referred to as consensus scoring.75 

 

Software for automated docking 

GOLD: http://www.ccdc.cam.ac.uk/prods/gold.html 

AutoDock: http://www.scripps.edu/pub/olson-web/doc/autodock/ 

DOCK: http://www.cmpharm.ucsf.edu/kuntz/dock.html 

DockVision: http://www.dockvision.com 

FlexX: http://cartan.gmd.de/FlexX 

ICM: http://www.molsoft.com/products/modules/dock.htm 

 

Protein-Ligand Docking in Drug Design 

The first step of the drug design is to identify the lead structure, a small molecule which binds to 

a given target protein.  The docking problems can be categorized as: 

 

Given two molecules with detailed 3-D structures: 

 

• Binding properties: bond strength and binding-complex morphology. 

• Protein-Protein or Protein-DNA docking: rigid-body docking, i.e., fixed overall shapes. 

• Protein-Ligand docking: the ligand is not fixed in its overall shape 

 

Since most drugs are small molecules, protein-ligand docking is of great interest in 

pharmaceutical.  The basic docking idea is to represent the active site by a set of spheres and 

then perform sphere matching76.  There are two main algorithms, which are described below: 

 

Algorithm 1: SPHGEN 

• calculate the molecular surface 

• generate spheres covering the active site 

• cluster spheres, remove very similar ones 

• radius too large 

• select clusters defining the active site 
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• color spheres by properties 

 

Algorithm 2: MATCH  

   (calculate a matching between ligand atoms L and protein spheres K) 

• two matches (l1,k1), (l2,k2) are distance-compatible if |d(l1,l2) – d(k1,k2)| ≤ ε 

• search for matchings Mi,j={(li,ki)} with max  |d(l1,l2) – d(k1,k2)| ≤ ε 

• Matching-Graph: nodes L x K, edges between distance compatible nodes 

• Matchings are cliques in the matching graph (cliques = completely connected subgraphs) 

 

Rigid-Body Protein-Ligand Docking 

With rigid-body protein-ligand docking, the protein and the ligand are assumed to be rigid.  The 

first and most widely used rigid-body protein-ligand docking algorithm is DOCK77.  The 

algorithm can be described as follows: 

 

• a set of spheres is created inside the active site, 

• the sphere represents the volume which could be occupied by the ligand molecule 

• the algorithm searches for ligands (represented by spheres) that match the spheres 

describing the active site 

 

Docking methods use receptor-ligand interactions to suggest binding modes.  This is 

accomplished by identifying regions of binding site liable to interact in a given way e.g. 

hydrophobic regions or H-bonds. These interactions are clearly important, but other factors also 

affect binding.  Scoring functions attempt to use all such factors to rank docked complexes in 

order of tightness of binding.  Different scoring functions vary in which terms they treat and 

exact form of treatment.   

 

DOCK comes with a very simple scoring function to complement simple shape-based docking 

algorithm.  DOCK ignores solvation, conformation and entropic effects completely.  It uses 

molecular mechanics method to estimate binding free energy – equivalent to binding enthalpy in 

this case. DOCK uses AMBER force field for binding electrostatics & sterics i.e. 

                                       ∆Gbind ≈ ∆Eelec + ∆Evdw/ster 
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∆Evdw/ster includes attractive van der Waals interactions and repulsive steric clashes.  These are 

calculated from the standard Lennard-Jones 6-12 potential using pairwise atom-atom terms.   

  

The electrostatic term in DOCK is taken as a simple sum of charge-charge interactions.  

Charges are estimated by Gasteiger’s electronegativity equalisation scheme – fast route to 

charges from 2D structure only.  Dielectric shielding can be applied to above equation to model 

the shielding of charges by each other. The value of ε varies for different receptors. 

 

The simplicity of DOCK is attractive – it is very quick to evaluate & easy to interpret. 

Calculation can be speeded up by evaluating electrostatic & conformation ‘fields’ on a grid 

within the binding site.  The score for a given ligand is then easy to calculate from atomic 

positions in the grid.  The lack of entropic and conformation effects means DOCK is only 

applicable to series of similar ligands.  In spite of this limitation, DOCK is remarkably 

successful. 

 

A different approach to empirical scoring is the ‘Potential of Mean Force’ (PMF) function of 

Muegge & Martin.  Atom types for important interactions in complexes are identified.  The 

strength of atom-atom interactions is found by regression against binding energies including 

distance-dependence terms.  This includes solvation, entropic etc. effects implicitly, and 

therefore is very fast.   

 

Recent studies suggest that no single scoring function works for every problem.  Two main 

measures of quality are used: 

 

•  comparison with ranking from experimental binding energies 

•  agreement with X-ray structure (RMSD)   

 

Certain interactions are better represented by different scoring functions.  Simple DOCK 

approaches can work better than more complex ones.  This leads to consensus scoring, where 

several scoring functions are used at once.  The simplest approach is to take the average 

predicted binding energies – but this doesn’t work well as results are not always on same scale.  
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Rank order (i.e. 1st,2nd,3rd,…) has been shown to be better than predicted DGbind.  Several 

statistics for consensus scoring have been proposed from rank.  The first study used DOCK, 

GOLD, FlexX and PMF to rank 15 ligands from 1st-15th.  Best criteria found to be ‘worst-best 

rank’ and ‘rank-sum’.  Worst-best drops the worst of the 4 ranks and takes next worst, while 

rank-sum adds the remaining 3 ranks e.g. ligand has ranks 3, 5, 6 & 12 – worst best is 6th and 

rank-sum is 14.  This method is known as CScore – and is implemented in several packages now. 

 

Flexible ligand docking 

GOLD, a genetic optimization for ligand docking is a program developed by Gareth Jones at the 

University of Sheffield (Sheffield, UK) in collaboration with Glaxo Wellcome (London) and the 

Cambridge Crystallographic Data Centre (CCDC; Cambridge, UK) where the technique is 

applied to the problem of docking ligands to protein binding sites78.   One chromosome describes 

the conformation of the ligand and selected protein side chains by defining the torsion angle of 

each rotatable bond.  Another chromosome stores a mapping between hydrogen bond partners in 

the protein and the ligand.  3D structures are generated from these two chromosomes.  A scoring 

function that evaluates the hydrogen bond, ligand internal energy and van der Waals energy is 

applied as the fitness function. The GOLD docking method also has its own scoring function, 

which is slightly more sophisticated than DOCK.  Rather than a simple electrostatic term, GOLD 

models the H-bonds in a complex.  Careful studies of how small molecules interact and 

crystallise give geometry/energy rules for different H-bonds.  GOLD is slower to evaluate than 

DOCK, but its better search capability results in comparable performance. 

. 

FlexX is perhaps the most complex scoring function currently available.  All the scoring 

functions discussed so far attempt to calculate binding energy directly.  All employ some version 

of the ‘master equation’ which partitions DGbind.  An alternative approach is to find an 

‘empirical scoring function’ from a database of binding energies.  Empirical scoring functions 

are a form of QSAR, with DGbind in place of activity.  These calculate properties of ligands and 

train the QSAR/scoring function from known values using linear regression and/or PLS.  

Properties used include polar/non-polar Solvent Accessible Surface Area (SASA), H-bond 

donors and acceptors and number of rotatable bonds.   
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Docking by Simulation 

Molecular dynamics simulations use the force field to calculate the forces on each atom of the 

whole system. Following classical mechanics, velocities and accelerations are calculated and the 

atoms are moved slightly with respect to a given time step. Simulated annealing is another 

optimization algorithm that avoids getting into local minima but lacks physical interpretation of 

the simulation itself. 

 

5.3 De novo Drug Design 
Docking/scoring finds active molecules from a list of possible ligands.  De novo drug design 

attempts to find new structures rather than comparing new ones.  While database searching is an 

attractive way to discover new lead compounds, database searching does not provide molecules 

that are structurally novel.  In addition, many databases are biased towards particular classes of 

compounds, and so limit the range of structures that can be found.  In de novo design, the 3-D 

structure of the receptor or the 3D pharmacophore is used to design new molecules.  The starting 

point is a receptor site from X-ray or modelling.  However, instead of possible ligand molecules, 

a database of common & realistic fragments is searched for a fit with binding site.  Fragments are 

chosen to give good shape and interaction overlap with binding site.  Scoring functions can be 

used to define which fragment(s) are best suited.  Fragments are then re-combined somehow to 

give possible drug leads.  There are two basic types of do novo design algorithm: ‘outside-in’ or 

‘inside-out’.  Both look to grow a fragment within the binding site, but differ in how fragments 

are chosen and molecule re-combined.  These will ideally converge to the same (or similar) 

solution given the same database and scoring function.  This is a relatively new approach, so not 

yet clear if either has any advantages. 

 

The outside-in method79 finds fragments which bind tightly to regions of active site, which are 

then combined to real molecules.  Initially the binding site is sampled for ‘site points’ where 

interactions could occur.  Next, fragments are placed on site points and scored with some 

function.  The scoring function and systematic search can usually identify binding fragments.  

This is only half the problem – combining fragments is not trivial.  One solution is to use a 

database of common connectors, and match geometry of fragments to known linker groups.  
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Alternatively a ‘skeleton’ can be grown between fragments using rings and/or acyclic C—C 

bonds. 

 

The inside-out method takes the opposite approach.  First one starts with a central ‘scaffold’ 

fragment and incrementally grows fragments off this.  The scaffold fragment should be rigid and 

tightly bound, but this is not always obvious.  Each time a fragment is added, the resulting 

molecule is re-docked into binding site.  Once docked the new molecule’s binding energy can be 

predicted using one or more scoring functions.  The search stops either when no further 

improvement found, or when binding is tighter than some pre-defined cutoff.  Repeated docking 

and scoring can be slow, but can discover new ligands. 

 

The main goal of rational or de novo design is to find an active compounds for further 

development, or leads.  Lead optimisation is equally important in overall drug development 

process.  Enhancement of activity is a major goal, but better solubility, delivery/distribution, 

toxicity & synthesis also important.  This often takes the form of ‘virtual screening’ of possible 

targets before any synthesis. 

 

 

Chapter 6: Computer-aided diagnostic imaging and image-guided 

interventions  

 
Recent advances in imaging research have shown the potential to change many aspects of 

clinical medicine within the next decade.  Image-guided therapy is growing rapidly.  Increasingly 

diseases are being diagnosed and treated using less invasive, more sophisticated imaging and 

image-guided procedures. Major new areas of research focus on development of the molecular, 

functional, cellular, and genetic imaging tools, aided by new information technology and image 

fusion/integration capabilities.  

 

The multidisciplinary field of image-guided therapy and surgery has become increasingly refined 

with application of techniques such as MRI, CT, and ultrasonography. Image-guided surgery 
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brings powerful technologies into the operating room by applying advances in computer science 

and engineering. The simultaneous combination of direct vision and imaging is possible with 

intraoperative MRI.27-32 Open-configuration MRI systems guide, plan, and direct multiple 

procedures from biopsies to percutaneous interventions and neurosurgery. Use of MRI to guide 

biopsies of lesions that cannot otherwise be detected and to direct therapy is a powerful 

application of this technology. 

 

Functional imaging (functional MRI/SPECT/PET) makes it possible to map brain function 

directly in the operating room .28 Functional MRI allows identification of the brain area by 

function, such as the speech center or motor cortex, and the surgeon can avoid damage to such 

critical areas. For certain interventions (e.g., biopsies, tumor resection, directed therapies), this 

imaging information enhances the ability to apply sophisticated imaging techniques to surgery. 

Intraoperative MR guidance for neurosurgery improves precision of tumor resection, particularly 

when high-resolution MRI images are combined with functional MRI, SPECT, and MR 

angiographic data. Further advances in MR-guided interventions, biopsies, ablations, and surgery 

are needed to expand their capabilities. 

 

Computer-aided diagnostic imaging and image-guided interventions are used for monitoring of 

disease progression, diagnosis, preoperative planning and intraoperative guidance and 

monitoring.  Postprocessing adds value to medical images. However, successful postprocessing 

requires complex and optimized processing systems.    

 

The increasing complexity of information available from image data sets increases demand on 

the diagnostic skills of radiologists. Two ways to improve diagnostic performance are by 

improving the radiologist's accuracy and by increasing the utility of diagnostic decisions. The 

ability to perform multimodal image fusion (e.g., combine data sets from PET and CT or SPECT 

and MRI) increases complexity and also requires innovative methods for increasing diagnostic 

accuracy, such as feature analysis and computer-aided diagnostic tools.  Statistical prediction 

rules are a form of computer-based decision support that improves diagnostic accuracy. Such 

rules can enable analysis of more than 20 variables on a mammogram and combine the results to 

provide an estimate of the probability of cancer. These tools are powerful and can improve the 
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quality and accuracy of diagnostic techniques, as illustrated by application of MRI for staging 

prostate cancer. 

 

6.1 Image Processing: Segmentation 
Key issues for digital imaging are segmentation and registration. Signal processing techniques 

are used to enhance features and generate the desired segmentation.  Results of the segmentation 

are aligned to other data acquisitions and to the actual patient during surgical procedures. Results 

of the segmentation are visualized using different rendering methods. 

 
Feature Enhancement 

Image data is filtered prior to segmentation to reduce the noise level and to emphasize image 

structures of interest. Segmentation of MR images often uses anisotropic diffusion for enhancing 

the gray-level image structure prior to segmentation.   By smoothing along structures and not 

across, the noise level can be reduced without severely blurring the image. Steerable filters that 

conform to the local structure adaptively are often used.  

 

Convolution involves multiplication and summation of filter kernel coefficients with signal 

voxels, over the local area that the filter supports. Since the result in each voxel can be calculated 

independently, these calculations can be done in parallel and thus the speedup for convolution is 

linear with the number of CPUs.  For large filter kernels (e.g., 9x9x9 voxels), it is more efficient 

to calculate the result of a convolution using the Discrete Fourier Transform (DFT).   

For example, FFTW is a software package developed at MIT. FFTW is a C subroutine library for 

performing the Discrete Fourier Transform (DFT) in one or more dimensions. An MPI version of 

the FFTW routines is available which makes it possible to perform the FFT calculation on 

distributed memory machines in addition to shared-memory architectures. 

 

Classification 

Classification is a technique for the segmentation of medical images. The k-Nearest Neighbor (k-

NN) classification rule is a technique for nonparametric supervised pattern classification. Duda, 

1973 describes k-NN classification and its properties. Each voxel is labeled with a tissue class 

selected from a set of possible classes. The possible tissue classes are described, in k-NN 
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classification, by selecting a set of typical voxels (prototypes) for each tissue type. Voxels of an 

unknown class are then classified by comparing the voxel intensity characteristics with those of 

the prototypes and selecting the class that occurs most frequently among the k nearest 

prototypes. 

 

The classification of each voxel is independent of neighboring voxels. As such the most 

straightforward parallelization strategy is to apply the k-NN classification rule to several voxels 

at the same time, up to the number of CPUs available for computation. Speedup is linear with the 

number of CPUs.  

 

EM Segmentation  

EM segmentation is a method that iterates between conventional tissue classification and the 

estimation of intensity inhomogeneity to correct for imaging artifacts. The EM algorithm 

consists of a conventional classification step, an intensity prediction step, and an intensity 

correction step. Classification is parallelized by classifying different voxels simultaneously, as 

above. The same is done with the intensity prediction step. Intensity correction primarily 

involves low-pass filtering implemented with a parallel unity gain filtering step that costs only 

two multiplies per voxel per axis, independent of filter length. 

 

6.2 Image Processing: Registration 
Linear Registration 

Linear registration algorithms align several complementary data sets of the same subject (e.g., a 

CT and an MRI scan). Another application is the initial alignment, as a preliminary step before 

non-linear registration, of a canonical data set and the data from a specific subject.  Different 

algorithms that have been published in the literature Warfield,et al 1998, West, et al 1997, 

typically trade off speed (e.g., through feature extraction or subsampling) and robustness and 

capture range (e.g., by simulated annealing).  

 

Intra-patient Registration 

A common method works with the concept of subsampling of the gray scale data for speed-up. 

Entropy calculations are performed in a histogram feature space. The algorithm is relatively fast 
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and does not require any preprocessing of the data. The operator selects three paired landmarks 

and the algorithm then calculates an alignment to subvoxel accuracy. Alignment is assessed by 

using inherent contrast similarity to directly measure the image alignment. The algorithm 

requires entropy and joint entropy computation. Mutual information is defined in terms of 

entropy.  The first term is the entropy in the reference volume. The second term is the entropy of 

the part of the test volume into which the reference volume projects. It encourages 

transformations that project the reference volume into complex parts of the test volume. The 

third term, the (negative) joint entropy of the reference and test volume, contributes when they 

are functionally related. A histogram-based density estimate is used for the joint entropy 

estimation. The joint histogram computation is parallelized by dividing data into chunks, 

computing the histogram of each chunk, and then adding the histograms together. The joint 

entropy can then be calculated by a loop over the histogram. Acquisitions with different contrasts 

can be registered into multichannel data sets for better segmentation and visualization. Examples 

include image analysis in neonates (T2/PD - SPGR,) and surgical planning (MRA, SPECT, 

fMRI, MRI, CT). 

 
Interpatient Registration 

In a situation where it is necessary to align two data sets of different subjects dense feature 

comparison turns out to be more robust than sparse feature comparison. Parallelization is used to 

allow the speed-up of dense feature comparisons, making the application of this technique 

practical in a clinical context. 

 

Segmentations of the patient scans to be aligned are generated; then a measure mismatch of 

alignment is generated by counting the number of voxels that don't match; then a transform that 

minimizes the mismatch is determined. Each scan to be registered is classified and a 

multiresolution pyramid of the classified scan is constructed. An initial alignment is selected as 

either the identity transform or the transform identified with the process described below. For 

each level of the pyramid, the optimum alignment is determined by minimizing the mismatch of 

corresponding tissue labels. Each evaluation of this mismatch can be computed in parallel. 
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The evaluation of a particular transform involves the comparison of aligned data with a two step 

process. First the moving data set is resampled into the frame of the stationary data set. Second is 

the voxelwise comparison of label values. Each of these steps can be parallelized by carrying out 

the operations simultaneously on some voxels in the frame of the stationary data set. This 

algorithm was initially developed for interpatient registration such as the initial alignment for 

template driven segmentation (TDS). TDS is used in many applications such as the quantitative 

analysis of MS, brain development, schizophrenia, and rheumatoid arthritis. More recently, the 

algorithm has been used for intrapatient alignment, if a large capture range was needed.  

 

Non-linear registration 

Local shape differences between data sets can be identified by finding a 3D deformation field 

that alters the coordinate system of one data set to maximize the similarity of local intensities 

with the other. Elastic matching aims to match a template, describing the anatomy expected to be 

present, to a particular patient scan so that the information associated with the template can be 

projected directly onto the patient scan on a voxel to voxel basis. The template can be an atlas of 

normal anatomy (deterministic or probabilistic), or it can be a scan from a different modality, or 

it can be a scan from the same modality. The template can contain information typically found in 

anatomical textbooks, but unlike normal textbooks, can be linked to any form of relevant digital 

information.  

 

Algorithmic improvements to speed up the processing include a multiresolution approach with 

fast local similarity measurement, and a simplified regularization model for the elastic 

membrane.  Algorithms parallelized for SMP such as low pass filter upsampling and 

downsampling, arithmetic operations, and solving systems of equations are typically used.  

Nonlinear registration is primarily used for incremental alignment in TDS, following the linear 

alignment step 

 

6.3 Visualization: Surface Model Generation and Volume Rendering 
To visualize the surface of structures by simulating light reflection requires generation of models 

by segmentation. The process consists of segmentation of the data into binary label maps and 

application of a surface model generation pipeline consisting of the marching cubes algorithm 
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for triangle model generation, followed by triangle decimation and triangle smoothing to reduce 

triangle count. The algorithm is parallelized by distributed computation of triangle models for 

each structure of a data set. Efficient triangle model generation has been used for the visual 

verification of segmentation procedures, visualization for surgical planning and navigation. 

 

Visualization of structures without the need for the extensive preprocessing required by the 

surface model approach can be done using volume rendering. This is of benefit if the structures 

to be visualized are constantly changing. Ray casting and shear warp algorithms are among the 

most popular approaches for volume rendering,. The algorithm is parallelized by applying the 

light transmission model simultaneously to different sections of the data associated with different 

screen pixels. 

 

6.4 Visualization Case Study: National Center for Macromolecular Imaging 
Dr. Wah Chiu is the Alvin Romansky Professor at the Department of Biochemistry & Molecular 

Biology at the Baylor College of Medicine. He is the director of the National Center for 

Macromolecular Imaging (NCMI). Together with Dr. Steve Ludtke, Co-Director of NCMI, and 

Wen Jiang, a post-doctoral researcher, Dr. Chiu discussed his research on the use of electron 

cryomicroscopy to determine the three-dimensional structures of molecules and macromolecular 

assemblies at subnanometer resolution. Their laboratory is uniquely equipped with intermediate 

high-voltage electron cryomicroscopes that have been dedicated to advance the technology for 

imaging individual macromolecular assemblies embedded in vitreous ice. They are now 

developing computational procedures to facilitate high throughput and high quality data 

collection via computer instead of manual control approach. The NCMI has the missions of 

collaboration, training and dissemination in addition to core research and technology 

development. Presently, NCMI is engaged with over 50 collaborators/users and 150 projects 

ranging from solving 3-D structures to exploring grid computing. 

 

Current computational work at NCMI focuses on a technique known as single particle 

reconstruction. In this technique, electron cryo-microscopy is used to record projection images of 

individual molecules or macromolecular assemblies embedded in vitreous ice. These randomly 

oriented particle images are then processed using a complex sequence of algorithms including 
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multidimensional alignment, deconvolution, Fourier and real-space reconstruction techniques, 

etc. The final result is a 3D structure of the original molecule. Images are extremely noisy, with 

typical peak SNR values of 0.6. Digital images range from 64x64 pixels to 1024x1024 pixel 

arrays. Reconstructions are thus 643 to 10243. For a given macromolecular assembly, between 

10,000 and 1,000,000 images are processed to produce the final reconstruction. For a small 

problem this may take only 100 CPU hours, but typical high-resolution problems require 

~10,000 CPU-hours, and the cutting edge problems now being worked on are anticipated to use 

100,000-1,000,000 CPU-Hours. The raw image data ranges from 1-100 gigabytes of storage. 

Memory requirement for typical problems is ~2 Gb/CPU, though larger problems would work 

better with 8-16 Gb. 

 

Current methods use very coarse-grained parallelism with good scalability to well over 100 

CPUs. Larger problems scale better. For this reason, raw price-performance is the main 

consideration in CPU purchasing decisions. The NCMI currently has a 160 CPU linux cluster 

dedicated to processing, and this will at least double in the next year. As research moves towards 

generating higher resolution and larger images requiring longer running jobs, memory bandwidth 

could become a significant bottleneck. Current algorithms are coarse-grained, but algorithm 

changes to handle increased image sizes and produce better resolution may require more finely 

grained code implemented using MPI or other clustering protocol. If MPI-based software is 

relied on, there are severe fault tolerance problems, since a single node crashing will kill the 

entire job. More fault-tolerant parallelism would be desirable. 

 

As with the Cardiac Group at UCSD, staff and researchers at NCMI come from a variety of 

backgrounds and often have little formal computer science training. The ease of use of un-

compiled scripting languages has quickened their adaptation in many bio-medical computing 

environments, including NCMI. Virtually all high-level programming is now done in Python 

with numerically intensive operations performed by embedded C++ libraries. While Python is 

not currently used directly for numerically intensive work it would be quite desirable if this were 

possible in certain cases. The availability of a higher performance python solution is highly 

desirable, ie – a python compiler or better Just-In-Time (JIT) environment.  
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Code optimization is a substantial issue. Currently available profiling tools often do not provide 

fine enough detail to provide significant performance improvements, even when they are 

possible. The profiler SHARK (Mac OSX) has demonstrated that there are substantial 

opportunities for optimizations that have been missed in our hand-coding efforts. Better freely 

available optimization/profiling tools would be very useful. Writing highly optimized code has 

some drawbacks when it comes to portability, however. It is possible to write code that is 

relatively platform independent. Experience has shown that it takes about two days worth of 

effort to port a moderately sized program across platforms. However, this assumes that minimal 

platform-specific optimizations are performed. 

 

NCMI is has seen extraordinary growth in the number of users taking advantage of their software 

products and they are preparing for the future. The single particle reconstruction field is growing 

rapidly. Over the last 2-3 years, the number of researchers using NCMI software (known as 

EMAN) has nearly tripled to about 300 users. While most biological scientists today are familiar 

with computers, they may not have the expertise to adapt NCMI software to fit specific research 

needs. NCMI is seeking to make their technology packaged so that more scientists can use it for 

their own research. Studies have indicated that there has recently been a drop of nearly 20% of 

computer science majors in the US (http://www.usatoday.com/tech/news/2004-08-08-computer-

science_x.htm) . If this develops into a trend, manpower issues could be a serious problem as 

fewer system managers and programmers enter the field although roughly 10% of NIH money is 

anticipated to be used for bio-computing activities in the coming decade.   

 

6.5 Visualization Needs 
Interviewees 

 

Ron Kikinis, M.D.  

Ron Kikinis is the Director of the Surgical Planning Laboratory of the Department of Radiology, 

Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and an Associate 

Professor of Radiology at Harvard Medical School, as well as an Adjoint Professor of 

Biomedical Engineering at Boston University. His interests include the development of clinical 

applications for image processing, computer vision and interactive rendering methods.  
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Joachim Frank, Ph.D. 

Dr. Frank is a Howard Hughes Medical School Institute Investigator. He is also a Professor for 

the School of Public Health and Biomedical Sciences at the New York State Department of 

Health, Wadsworth Center. His laboratory develops methods of 3D visualization and structural 

analysis with the electron microscope, and applies these methods to a number of important 

biological structures.  

 

Wah Chiu Ph.D. 

Wah Chiu is the director of the National Center for Macromolecular Imaging (NCMI). Together 

with Dr. Steve Ludtke, Co-Director of NCMI, and Wen Jiang, a post-doctoral researcher, Dr. 

Chiu discussed his research on the use of electron cryomicroscopy to determine the three-

dimensional structures of molecules and macromolecular assemblies at subnanometer resolution.  

 

Requirements 

1. The best resolution obtained to date is at 8 Angstroms. At this resolution, alpha helixes 

are visible, but beta sheets are not. At 3 Angstroms resolution, where beta sheets would 

be visible and most of the structure could be traced, it is estimated that 1 million images 

would be required. The following  capabilities need to be developed to achieve 3 

Angstrom resolution: 

- Data collection needs to be automated. Currently, micrographs are collected on film and 

then scanned. Direct digital readout with sufficiently large (4k x 4k and larger) CCD 

cameras, and automation of the collection of images are essential for higher productivity. 

 - At this resolution, there will be an explosion in the volume of computation. It 

will be necessary to make better use of existing computational resources, perhaps by 

developing distributed computing pipelines. 

- Algorithms need to be developed to deal with conformational heterogeneity. An 

underlying assumption of single particle reconstruction is that the molecules imaged have 

identical structure.  In order to differentiate between possible conformational states, 

classification algorithms, including self-organized maps and neural networks, may be 

needed to be folded into existing refinement techniques. 
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       2. Some current bottlenecks in productivity include: 

- Scheduling tools use a lot of overhead, so these are not used. This means that the     

good will of users is required when multiple users are on the system and competition for 

resources is high. 

- Data streams and formats are not homogenous across commercial and academic 

software. This can present problems for collaborations, but it also prevents academic 

groups from using multiple software.  

3. Algorithmic improvements are handled by specialists. Additional improvements in the  

reconstruction procedure are expected to come from (i) the inclusion of classification 

algorithms, (ii) a refinement scheme that is based on a simultaneous solution of the 

reconstruction and alignment problem, and (iii) updating algorithms as platforms change 

to take advantage of improved performance offered by new platforms. 

4. Digital images range from 64x64 pixels to 1024x1024 pixel arrays. Reconstructions 

are thus 643 to 10243. For a given macromolecular assembly, between 10,000 and 

1,000,000 images are processed to produce the final reconstruction. For a small problem 

this may take only 100 CPU hours, but typical high-resolution problems require ~10,000 

CPU-hours, and the cutting edge problems now being worked on are anticipated to use 

100,000-1,000,000 CPU-Hours. The raw image data ranges from 1-100 gigabytes of 

storage. Memory requirement for typical problems is ~2 Gb/CPU, though larger 

problems would work better with 8-16 Gb. 

5. As research moves towards generating higher resolution and larger images requiring 

longer running jobs, memory bandwidth could become a significant bottleneck. Current 

algorithms are coarse-grained, but algorithm changes to handle increased image sizes and 

produce better resolution may require more finely grained code implemented using MPI 

or other clustering protocol. 

6. Desirable productivity tools that address the following issues: 

- Code optimization is a substantial issue. Currently available profiling tools often do 

not provide fine enough detail to provide significant performance improvements, 

even when they are possible. The profiler SHARK (Mac OSX) has demonstrated that 

there are substantial opportunities for optimizations that have been missed in our 
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hand-coding efforts. Better freely available optimization/profiling tools would be very 

useful. 

- If MPI-based software is relied on, there are severe fault tolerance problems, since a 

single node crashing will kill the entire job. More fault-tolerant parallelism would be 

desirable. 

- Virtually all high-level programming is now done in Python with numerically 

intensive operations performed by embedded C++ libraries. The availability of a 

higher performance python solution is highly desirable, i.e. – a python compiler or 

better JIT environment.  

- Experience has shown that it takes about two days worth of effort to port a 

moderately sized program across platforms. However, this assumes that minimal 

platform-specific optimizations are performed.  

7. Providing the surgeon with real-time information about the effects of surgical 

decisions is a substantial computational burden on computing systems. Data 

augmentation algorithms must accurately predict the response of tissue to surgical 

invasion. During brain surgery, finite element mesh simulations, with millions of 

elements, can saturate a peta-flop machine. 

8. Providing image guided therapy depends critically on memory bandwidth and 

latency; performance is relatively independent of architecture. 
 

Visualization in biological and medical research has rapidly emerged as a unique and significant 

discipline aimed at developing approaches and tools to allow researchers to "see into" and 

comprehend the living systems they are studying. Topics of investigation and development in  

the discipline span from basic theory through tools and systems to complete applications. The 

benefits of medical imaging systems have clearly been established in several areas, including 

improved training, better diagnosis, and accuracy in performing certain conventional surgical 

procedures. Ultimately, the continual improvement of visualization technology, including 

developments in algorithmic, software, and computer processing, will pave the way for its 

permanent integration into surgery, healthcare delivery, and medical education. 
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Chapter 7: Virtual Soldier Project  
 

The DARPA Virtual Soldier Project (www.virtual soldier.net) is investigating methods to 

provide improved medical care for the soldier. The project is focused on production of complex 

mathematical models to create holomers, or physiological representations of individual soldiers 

that can be used to improve medical diagnosis on and off the battlefield.  The holomer data will 

be coupled with predictive modeling software, to facilitate a new level of integration in medical 

procedures. The Virtual Soldier will provide multiple capabilities, including automatic diagnosis 

of battlefield injuries; prediction of soldier performance; evaluation of non-lethal weapons; and 

virtual clinical trials.. 

 

7.1 The Use of Hydrocode and Other Modeling Approaches for Modeling the 

Ballistic Wounding of Tissue 
Robert Eisler, Mission Research Corporation 

Hydrocode, developed at the Lawrence Livermore Laboratory, is often used for modeling 

ballistic interactions and what happens to projectiles under high energy transfer settings. For this 

reason the study of this phenomenon is known as Hydrocode analysis (hydra due to liquid, code 

is due to the requirement for sufficient computer power for modeling and simulation). 

Hydocodes's are a popular field of applied mathematics and are widely recognized as a valuable 

resource in mathematical modeling under high impact situations, where huge energy transfers 

occur. Hydrocodes were developed because under high temperatures and pressures, many robust 

materials, such as ceramics and iron, behave more like a liquid than a solid. However, this 

approach may be limited because biological tissue already contains a great deal of water, and is 

structurally much more complex than uniformly hard materials such as iron or ceramics. In 

addition, little is actually known about the material properties of tissue, although some resources 

exist (see. Thus, more work in this domain may be useful, and if the computing power is 

available, and the research can be more focused on integration of accurate biological models into 

the studies, then more success may be anticipated – one of the goals of the Virtual Soldier 

Project and other efforts such as the Digital Human project.  
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Specific Approach 

The role that Robert Eisler and the Mission Research Corporation plays in the Virtual Soldier 

Project could benefit greatly from HPCS. Their goal is to develop analytic models that describe 

the tissue damage from ballistic experiments that produce penetrating wounds to the heart in an 

animal model. The complexity of this approach is staggering, and reasonable timeframes require 

massive computing power. 

 

Acoustic measurements are taken from the porcine tissue that is traversed by the wound tract and 

they will be used to develop stress-strain models for the tissue material as a function of 

frequency. However, more detailed tissue models are forthcoming, adding exponential 

complexity to this problem. 

 

The Lamé constants, λ and µ, arise in stress-strain relationships and can be used to express other 

solid material properties such as Young's modulus, Poisson's ratio, Bulk modulus, and Shear 

modulus.  To derive the Lamé constants, the group will use the relationships between the 

constants, density and sound speed measured for each given solid sample.  These relationships 

are given in the following equations: 

 

cL=sqrt((λ+2µ)/ρ) 

cs=sqrt(µ/ρ) 

where cL =the speed of sound for a longitudinal wave, 

cs =the speed of sound for a shear wave 

ρ =density 

both cs and cL are a function of the frequency of the sound wave. 

 

After mapping material properties to a porcine anatomical model, wound trajectories can be 

simulated.  It will be assumed that projectiles suffer only minor deformations in the wound tract 

so that rigid body dynamics can be used.  Determining the wound tract consists of determining 

the motion of the center of mass of the projectile and the motion of the projectile about its center 

of mass (i.e. rotations and small deformations perhaps).  Experiments have been carried out by 

shooting small spheres and other projectiles into gelatin targets to obtain the penetration depth as 
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a function of initial velocity given some type of material.  By analytically inverting the data 

yielded by these experiments, it is possible to solve for the retardation force as a function of 

instantaneous projectile velocity.   

 

To do this, the problem can be first reduced to finding the retardation force F(v) per unit mass on 

a spherical projectile, given empirical data relating the distribution of the penetration depth, 

δ(v0), to the entry velocity v0.  It is also assumed that at low velocities, the retardation force 

becomes constant, and at high velocities (near the speed of sound), the retardation force is 

proportional to the square of the instantaneous velocity.   

 

The relationship between delta and F(v) is: F(v) = v/(d δ /dv).  For low velocities, the proposal 

taylor expands the function delta as δ (v)=v2(a+bv+cv2).  For high velocities, 

δ(v)=a'*ln(v)+b'/v+c'/v2.  The data can be then fitted to these equations to yield the coefficients 

for delta.  Delta can then be differentiated with respect to v and substituted into the equation for 

F(v). 
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Figure 7.1:  Parallelization of Material Point Method (MPM) Codes for Torso and 

Cardiovascular Wounds 

Christopher Johnson, Ph.D., University of Utah 

 

Material Point Method (MPM) 

 MPM is a new particle-based method for simulations in computational solid and fluid 

mechanics, This method uses a regular structured grid as a computational scratchpad for 

computing spatial gradients of field variables for representation in the equations of motion 

(Figure 1A, green lines).  The materials of interest are discretized with particles rather than a 

traditional connected mesh.  The grid is convected with the particles (Figure 1B red circles) 

during deformations that occur over a time-step, eliminating the diffusion problems associated 

with advection on an Eulerian grid.  The grid is restored to its original configuration at the end of 

a time-step while the particles remain deformed/convected (Figure 1C).  Coupled solid-fluid 

mechanical simulations are readily performed with MPM because a regular grid is used for 
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gradient calculations. The grid then serves as both an Eulerian reference frame for CFD 

calculations and an updated Lagrangian reference frame for MPM calculations.   MPM has 

several significant advantages for the presently proposed research.  In particular MPM makes it 

possible to simulate the evolution of complex free surfaces and the fragmentation of those 

surfaces. The method has been used with great success to model the fragmentation of solid 

bodies as part of the Department of Energy sponsored Center for the Simulation of Accidental 

Fires and Explosions (C-SAFE) at the University of Utah. The particular strength of MPM is that 

it avoids issues of element inversion and mesh entanglement during the simulations and is 

straightforward to parallelize. 

 

MPM codes have been parallelized in Utah using Message Passing Interface (MPI) for execution 

on distributed memory machines [1], which will allow the simulation of extremely large 

problems. The explicit MPM code was implemented within the Uintah Computational 

Framework (UCF)80 and contains a very high content of parallel code. This framework was 

developed at the University of Utah, initially in support of the Department of Energy sponsored 

Center for the Simulation of Accidental Fires and Explosions (C-SAFE), and utilizes domain 

decomposition to achieve parallelization. Previous implementations of the MPM algorithms have 

utilized explicit time integration.  This approach will be especially useful in further work in 

simulating events such as a slow moving bullet fragment or shrapnel impacting the heart. 

 

 

 

 

 

 

 

 

 

In the Virtual Soldier Project, one strategy that is being used is large-scale computational 

simulations of torso wounds that will use computational models of the cardiovascular system 

created at Auckland, UCSD and Utah. The challenge of computing deformation and structural 

A 

B

C

                              Figure 7.2:  Schematic of a single computational step in MPM algorithm. 
  A) Initial distribution of particles (red) and background computational grid (green).  B) Stretching (vertical) and 
contraction (lateral) applied to particles.  Computational grid convects with particles.  C) Computational grid is reset and 
particles remain deformed/convected. 
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damage is being addressed collaboratively with the researchers at UCSD, with the Utah team 

pursuing the use of both conventional finite element techniques and the material point method 

(MPM).  

 

The latter method allows substantial structural changes to be readily computed through the 

explicit movement of tissue across the mesh. Experience with MPM methods has shown that it 

provides accurate solutions for problems involving large deformations such as projectile 

intrusions, without the drawback of mesh distortion that is typically encountered in the finite 

element method81 [2]. 

 

A key research issue is that of resetting the computational grid at the end of each time-step.  At 

each time-step, a displacement is computed at every computational node.  In principle, the grid 

has deformed according to these displacements.  In practice, these displacements are interpolated 

to the particles, which are then displaced accordingly, in essence moving them through the grid.  

This is a sensible choice for simulations that involve deformations that may lead to mesh 

entanglement.  The initial grids used will be the three-dimensional Hermite cubic meshes 

developed by San Diego. This aim involves mapping the MPM solutions onto the meshes needed 

by the other simulation components. An investigation of this will be a key research task in the 

first part of the project. It will also be of great importance to compare this approach with the 

more standard finite element approach used by the San Diego group. A preliminary assessment 

of MPM usefulness with regard to the problem area will be a key deliverable of the project.  A 

similar assessment80 for a different problem class has already provided encouragement. 
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Chapter 8: Interviews 
 

We conducted interviews with researchers in several fields at various professional levels, from 

graduate students to post docs to researchers to directors. In total we conducted interviews with 

representatives from 15 groups. The individuals had positions at various career levels within the 

computational community, from directors of large centers to graduate students.  

 

8.1 Stanley K. Burt, Ph.D. 
Director of the National Cancer Institute's Advanced Biomedical Computing Center (ABCC). 

Phone: 301-846-2178 

Email: burt@ncifcrf.gov 

http://www-fbsc.ncifcrf.gov/ 

 

Stan Burt, Ph.D. is the Director of the National Cancer Institute's Advanced Biomedical 

Computing Center (ABCC).The National Cancer Institute's supercomputing facility is a fully 

integrated, high performance, scientific computing resource located at the NCI-Frederick campus 

in Frederick, MD.  The facility provides state-of-the-art computing support and technology to the 

scientists of the National Cancer Institute (NCI), National Institutes of Health (NIH), and 

extramural biomedical researchers.  Unlike some other high performance centers, ABCC only 

supports research directed toward biological problems, thus making it somewhat unique.  For 

more information, see the presentation available at: www.fas.org/biomed_hpcs. 

 

Summary of key points 

The key ideas conveyed at the interview with Dr. Burt can be summarized as follows: 

1. ABCC is focusing on grand challenge type problems such as deciphering the human 

genome, understanding structure-function relations of biological molecules, and development of 

therapeutics for numerous diseases, especially AIDS and cancer. 

2. The center provides a heterogeneous computer environment in order to let researchers 

match their specific problem needs to the appropriate platform.  The centers maintains suite of 

programs ranging from bioinformatics, to molecular dynamics, to quantum chemistry. 
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3. Quantum chemistry has not been heavily exploited for studying biological systems 

mainly due to limitations in computer power and memory.  

4. Computers are only now attaining speeds and memory size that allow quantum 

investigations of biological systems to be fruitful - but, even so, the size of the problem that can 

be studied is still severely limited and there is the need for new algorithmic development.  

5. Ab initio and density functional methods (DFT) offer the best hope for understanding 

enzyme mechanisms, hydrogen bonding, polarization effects, spectra, Van der Waals interactions 

and other fundamental processes in biology. 

6. Theoretical approaches that assess ligand-protein binding affinity prior to synthesis and 

testing of ligands are of obvious importance in the field of structure based drug design.  A 

correlated ab initio quantum mechanical treatment using on the order of 200 or more active site 

atoms with large basis sets containing polarization and diffuse functions is necessary for an 

accurate characterization of ligand-binding processes. The iterative solution of the Poisson 

equation to determine polarization requires a solution of 80,000 coupled equations.  

7. Analysis has shown that in order to obtain absolute binding free energies to within one 

kcal/mol precision it will be necessary to solve 500,000 to one million coupled equations. In 

order to accomplish this, a one or two order of magnitude increase in computational power will 

be required. 

 

8.2 Brett Peterson, Ph.D. 
NIH-NCRR, Health Science Administration 

301.435.0758 

petersob@mail.nih.gov 

 

Dr. Peterson is health scientist administrator in NCRR’s Division of Biomedical Technology.  

The interview was held at the January 2003 workshop. He discussed the Biomedical Informatics 

Research Network (BIRN), a National Institutes of Health initiative that fosters distributed 

collaborations in biomedical science by utilizing information technology innovations.  Currently 

the BIRN involves a consortium of 14 universities and 22 research groups that participate in one 

or more of three test bed projects centered around brain imaging of human neurological disorders 



 
 

 88

and associated animal models.  For more information, see the presentation available at: 

www.fas.org/biomed_hpcs. 

 

Summary of key points 

The most important key ideas conveyed at the interview with Dr. Peterson, NIH-NCRR, Health 

Science Administration, can be summarized as follows: 

 

1.  BIRN, started in 2001, links together some of the Nation’s top brain-imaging research 

centers, allowing scientists to share, compare, and morph together brain scans from healthy 

individuals, patients with brain disorders, and nonhuman species, such as mice with neurological 

conditions. 

2.  Goals are to: establish distributed and linked data collections for investigators’ research 

projects; enable access to heterogeneous "grid-based" computing resources for research project 

analyses; provide data mining tools to search multiple data collections or databases; develop the 

software and hardware infrastructure that will allow scientists to conduct valid multisite 

neuroimaging studies, for example. 

3.  BIRN will build three federated databases: Morphometry BIRN, which focuses on human 

brain structure; Function BIRN, which analyzes functioning of the human brain; and Mouse 

BIRN, which emphasizes studies of the mouse brain and cross-species comparisons.   

4.  Morphology BIRN is focuses on combining data from multiple acquisition sites and 

increasing the statistical power for studying relatively rare populations. 

5.  Functional BIRN is developing a common fMRI protocol to study regional brain dysfunction 

related to the progress and treatment of schizophrenia and investigating techniques to insure 

interoperability of existing tools for multi-model analysis. 

6.  Mouse BIRN is studying animal disease models across dimensional scales to test hypothesis 

with human neurological disorders. 

7. The BIRN coordinating center will build a fully integrated architecture on top of the 

network for sharing and mining data (the broadband Abilene and Calren-2 network backbones 

serve as the foundation for the BIRN network.) Globus and the Storage Resource Broker (SRB) 

are examples of services and applications that will be used. On top of the data and computational 

grid, data modeling and integration tools will be incorporated and developed to facilitate the 
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construction of project- and site-specific data models; extend methods to query and retrieve 

complex data and associations from each partnering site; and develop a body of "domain 

knowledge" to allow correlation of data in the BIRN archives.   A universal visualization toolkit 

will be developed, incorporating elements and tools from each of the partnering site along with 

comprehensive file format converters. The Grid Security Infrastructure (GSI) system within the 

Globus toolkit will provide services to address security, including authentication, encryption, and 

enforcement of a signed certificate authority. For the Brain Morphology scientific project, human 

data will be appropriately sanitized prior to insertion into the BIRN file system as appropriate to 

satisfy HIPPA requirements. 

 

8.3 Giri Chukkapalli, Ph.D. 
Scientific Computing Group 

San Diego Supercomputer Center 

 

Dr. Giri Chukkapalli received his PH.D in Mechanical Engineering at the University of Toronto, 

focusing his dissertation on developing weather models on parallel computers.  He is an assistant 

programmer/analyst at SDSC, where he is involved with several projects, including code (MPI) 

parallelization, the IBM SPII supercomputer, and research involving computational fluid 

dynamics.  He discussed Protein Structure Predication using Structure Fragment Libraries work 

he is doing with Prof. Shankar Subramanyam.  For more information, see the presentation 

available at: www.fas.org/biomed_hpcs. 

 

Summary of key points 

1. The research team with which he works uses an ab initio MD based approach.  It is compute 

intensive, data intensive, irregular and pipeline driven. 

2.  Their procedure is as follows: 

 Generation of a comprehensive fragment library 

 Clustering fragments to generate the structural alphabet 

 Matching target sequence fragments to the structure fragments 

 Stitching of fragments to generate a model structure 

 Global and local optimization of model structure 
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 Sanity check 

3. The fragment library is written in Oracle database and is approximately 20k lines of code. 

4. The clustering algorithms are computationally intensive and are currently implemented on a 

SUN E15k with 72 processors and 300 GB of memory, using a java thread library.  The 

algorithms are easier to implement using shared memory parallelism due to tight coupling, 

fine grained, non-uniform work load 

5. The model structure optimization uses a GA algorithm and is compute intensive. 

6. Requirements identified are: 

a. Hardware/software to support the pipeline processing efficiently (other fields have 

similar needs, including climate modeling) 

b. Tools to schedule such a pipeline and for checkpointing 

c. Well-balanced hardware pipeline from archival storage to compute elements without 

bottlenecks 

d. Easily programmable FPGA coprocessor boards to handle integer and other DSP 

branch of the pipeline 

e. Hardware and software to handle the overlapped computation, communication and 

I/O 

f. Efficient ANN and GA libraries similar to LAPACK 

 

 

8.4  Joel Stiles, Ph.D. 
Associate Professor, Mellon College of Science & Pittsburgh Supercomputing Center 

Biomedical Applications, Pittsburgh Supercomputing Center  

stiles@psc.edu  

Home page: http://www.psc.edu/~stiles/ 

Phone: 412 - 268-4786 

 

Dr. Joel Stiles is Associate Professor, Mellon College of Science.  He and Tom Bartol 

(Computation Neurobiology Laboratory, Salk Institute) developed MCell, a simulation program 

that makes it possible to incorporate high resolution ultrastructure into models of ligand diffusion 

and signaling: MCell is a general Monte Carlo simulator of cellular microphysiology.  Diffusion 
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of individual ligand molecules is simulated using a Brownian dynamics random walk algorithm, 

and bulk solution rate constants are converted into Monte Carlo probabilities so that the diffusing 

ligands can undergo stochastic chemical interactions with individual binding sites such as 

receptor proteins, enzymes, transporters, etc.  

 

Summary of key points 

1. Until recently, computational limits have precluded highly realistic 3D simulations of 

subcellular architecture and physiology. As a result, the contribution of actual 

ultrastructure to signaling variability and plasticity has gone largely unexplored, and 

quantitative modeling has been severely hampered. 

2. MCell's use to date has been focused on one aspect of biological signal transduction, 

namely the microphysiology of synaptic transmission, but other areas of possible 

application include statistical chemistry, diffusion theory, single channel simulation and 

data analysis, noise analysis, and Markov processes.  

3. Biological structures show tremendous complexity and diversity at the subcellular level. 

For example, a single cubic millimeter of cerebral cortex may contain of order 5 billion 

interdigitated synapses of different shapes and sizes. 

4. MCell is being parallelized with support from National Partnership for Advanced 

Computational Infrastructure (NPACI), to allow a single MCell job to split the 

computational load of its diffusion algorithm and its large memory requirements. 

5. Parallelization is challenging because although there is a maximum diffusion within a 

time step (and there are hundreds of thousands of time steps), it is not possible to know 

how many molecules will enter from nearby processors.  Processor boundaries introduce 

uncertainties in handling communications and the need to detect termination. 

6. Single large-scale simulations on massively parallel supercomputers is accomplished 

using MCell with KeLP, called MCell-K.  On the NPACI Blue Horizon system, a 256 

processor version runs at approx. 70%. 

7. An example simulation to map part of a 4-D parameter space representing the 

transmission behavior at a nerve-muscle synapse required 47,040 runs, which was 

completed in  48 hours running on a combination of 512 and 1024 processors and 

generated 50 gigabytes of output data representing new disciplinary results. 
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8. Key requirements: random number generators; vastly improved reliability of systems; 

tools to support load balancing. 

 

8.6 Brian Athey, Ph.D. 

Director, Michigan Center for Biological Information (MCBI) 

Assistant Professor Biomedical Informatics 

Director, University of Michigan Visible Human Project 

bleu@umich.edu 

 

Dr. Athey is Director of the Michigan Center for Biological Information at the University of 

Michigan .  MCBI provides advanced bioinformatics and computational resources for 

investigators in the academic and industrial sectors of Michigan. Researchers will have access to 

bioinformatics tools, genomics and proteomics databases, supercomputing resources, 

bioinformatics training, and bioinformatics consulting through MCBI. MCBI is researching 

appropriate hardware, middleware, and networking structures for state-wide analysis and data-

sharing in bioinformatics projects.  For more information, see the presentation available at: 

www.fas.org/biomed_hpcs. 

 

Summary of key points 

1.       General needs in biomedical sciences can be enabled by next generation supercomputing, 

for example:  mouse/human genome correlation; individual pharmacogenomic analysis using 

gene expression arrays; multi-modal radiology image fusion; millisecond structural biology 

enabled by synchrotron x-ray sources and 900 Mhz NMR; physiologically competent Digital 

Human Simulations 

2. Not all biology problems are embarrassingly parallel; shared memory with database(s) 

close in is preferred in many (most) biologically interesting problems. 

3. As data sizes grow data motion will bottleneck the computing progress.  For example, in 

the 100 seconds it takes to move the 1 GB file, a 1 GHz machine could perform 0.1TeraOP.  

Data needs to be local, and stay local.  Data motion needs to be asynchronous, and happen at 

near wire speeds.  Throwing money at the network does not solve the problem. 
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4. Data size issues dominate:  processing time, data motion and data storage.  Data must be 

distributed, Data I/O must occur over many channels, and have no single points of flow. 

5. Most bioinformatic applications are: integer bound; memory latency bound, and pointer 

chasers (cache thrashers). 

6. Key informational needs of researchers: 

– Almanac or index that would link every human gene to all the information known 

about these genes from the literature, from all relevant expenditures and other 

sources. 

– Better Relational databases helping researchers to move from a gene by gene 

approach 

– More focus on patterns and pattern recognition 

– Better and system wide in silico models of human  

 

8.7  Juan Cebral, Ph.D. 
Assistant Research Scientist 

George Mason University 

Dr. Juan Cebral discussed the research he and the research team including Rainald Loehner, and 

Orlando Soto, George Mason Univ.; and Peter L. Choyke and Peter J. Yim, National Institutes of 

Health.  The application he discussed is an image-based finite element model of hemodynamics 

in stenose carotid, a methodology to construct patient-specific, anatomically and physiologically 

realistic finite element models of blood flows.  Their approach uses MRA data to obtain all the 

anatomical and physiologic data necessary for realistic modeling of blood flows in carotid 

arteries with stenosis.  The application has the potential for use to characterize healthy and 

diseased flow and wall shear stress patterns.  For more information, see the presentation 

available at: www.fas.org/biomed_hpcs. 

 

Summary of key points 

1.  Anatomical models of carotid arteries with stenosis are reconstructed from contrast-enhanced 

magnetic resonance angiography (MRA) images using a tubular deformable model along each 

arterial branch. 
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2.  A surface-merging algorithm is used to create a watertight model of the carotid bifurcation for 

subsequent finite element grid generation.  

3.  A fully implicit scheme is used to solve the incompressible Navier-Stokes equations on 

unstructured grids in three-dimensions. 

3.  Physiologic boundary conditions are derived from cine phase-contrast MRA flow velocity 

measurements at two locations below and above the bifurcation. 

4.  The methodology was tested on image data of a patient with carotid artery stenosis. A finite 

element grid was successfully generated from contrast-enhanced MRA images, and pulsatile 

blood flow visualizations were produced. Visualizations of the wall shear stress distribution and 

of changes in both its magnitude and direction were produced. 

5.  These capabilities may be used to advance understanding of the generation and progression of 

vascular disease, and may eventually allow physicians to enhance current image-based diagnosis, 

and to predict and evaluate the outcome of interventional procedures non-invasively. 

6.  Potential other applications include: study the role of the communicating arteries during 

arterial occlusions and after endovsascular interventions, calculate transport of drugs, evaluate 

accuracy of 1D flow models, and evaluate vascular bed models used to impose boundary 

conditions when flow data is unavailable or incomplete. 

 

8.8 Ron Kikinis, M.D.  
Surgical Planning Laboratory 

Radiology; ASBI, L1-050 

Brigham & Women's Hospital 

75 Francis St. 

Boston, MA 02115 

kikinis@bwh.harvard.edu 

Home page: http://www.splweb.bwh.harvard.edu:8000/pages/ppl/kikinis/ 

Phone: (617) 732-7389  

 

Dr. Kikinis is the Director of the Surgical Planning Laboratory of the Department of Radiology, 

Brigham and Women's Hospital and Harvard Medical School, Boston, MA, and an Associate 

Professor of Radiology at Harvard Medical School, as well as an Adjoint Professor of 
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Biomedical Engineering at Boston University. His interests include the development of clinical 

applications for image processing, computer vision and interactive rendering methods. He is 

currently concentrating on developing fully automated segmentation methods and introducing 

computer graphics into the operating room. 

 

Summary of Key Points 

1. There are two general types of computation at the Surgical Planning Institute: data-

mining and integrated modeling/simulation. Data-mining tasks are performed with the 

using a pipeline process to handle MRI and CT images in a pooled environment suitable 

for grid computation. Integrated modeling/simulation involves augmenting images with 

the results of models and simulations constrained by sparse data acquisition. 

2. During surgery the patient changes and the patient’s pre-operative imagery is out-dated. 

Providing the surgeon with real-time information about the effects of surgical decisions is 

a substantial computational burden on computing systems. Data augmentation algorithms 

must accurately predict the response of tissue to surgical invasion. During brain surgery, 

finite element mesh simulations, with millions of elements, can saturate a peta-flop 

machine. 

3. Providing image guided therapy depends critically on memory bandwidth and latency; 

performance is relatively independent of architecture. 

4. As research horizons expand, new inefficiencies both from algorithms and computer 

power are revealed. This is due, in part, to a lack of knowledge at the boundaries of a 

field of scientific pursuit.    

 

8.9 The Cardiac Group at UCSD 
Dr. Taras  Usyk 

Sarah Healy 

Cardiac Mechanics Group 

University of California, San Diego  

Phone: (858)822-0346 

Web: http://cmrg.ucsd.edu/ 
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Dr. Taras Usyk is an Assistant Project Scientist and Sarah Healy is a 3rd year graduate student. 

Both are researchers in the Cardiac Mechanics Group directed by Andrew McCulloch. Andrew 

McCulloch is Professor of Bioengineering at the University of California San Diego. He is also a 

member of the Whitaker Institute of Biomedical Engineering, the UCSD/Salk Institute for 

Molecular Medicine and the Center for Research in Biological Structure, a Senior Fellow of the 

San Diego Supercomputer Center, and Director of the BioNOME Resource at the San Diego 

Supercomputer Center. Dr. Usyk and Sarah Healy collaborate on structurally and functionally 

integrated numerical models of cardiac electromechanics using the finite element method. Their 

goal is to perform whole organ simulations with biophysically detailed systems models involving 

over a hundred thousand degrees of freedom.  

 

Summary of key points: 

1. Electrophysiological models of the heart require small temporal and spatial scales, 

determined by the system of ODEs that comprise the cellular model. An operator splitting 

algorithm allows ODE and PDE systems to be solved separately with updates occurring 

every half timestep. Of these, the ODEs dominate with 90-95% of compute time being 

spend on them. However, this system is also data parallel and is where they are focusing 

their efforts. 

2. An example of an electrophysiological model that incorporates a mere 2x1x0.5 cm3 

volume of the heart ventricle uses 1024 finite elements in a tricubic spline approximation; 

state variables are evaluated at over 10,000 points in the volume. This represents 1/24th of 

the whole rabbit ventricle. The code currently requires 300 Mbytes of memory to run; 

about 250 Mbytes are used by the linear solver and the rest for the input file. Memory 

requirements scale roughly linearly with the mesh size. The code is written in a 

combination of python and Fortran, with the use of a linear solver written in C. It 

currently takes 10 hours to solve the wedge mesh to 1 second, with a time step of 0.1 ms 

on a single processor Pentium 4 running Linux. We would expect close to linear speedup 

on a parallel machine.       

3. The mesh size for mechanical models of the heart is determined by the ability of solvers 

to converge to stable solutions. While mechanical models typically require a fraction of 

the number of mesh points that electrophysiological models require, they have larger 
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memory requirements, requiring 4-5 Gbytes. This presents a problem when running on 

machines that have 2-4 Gbytes of memory; it often means simplifying components of the 

model.  

4. Embedding non-native code into a code base, for example embedding Fortran into 

Python, introduces technical issues with latency and compile efficiency. There is latency 

associated with handoff of I/O operations. Native and non-native code has to be compiled 

and debugged separately. 

5. There is a need for better debuggers and standard option on compilers. Relying on “print” 

statements for debugging is time consuming. 

6. O/S stability is an issue. Some versions of linux are more likely to crash than others. 

Productivity could be increased with better strategies for dealing with multiple users 

vying for the same memory. Currently, users are simply kicked off when too many users 

are on client/server systems. This results in loss of data and time. 

7. The demand for more computing power will never saturate. Currently, heart simulations 

run for only several to a couple of heart beats. Increased computational power will allow 

researchers to run to simulate minutes instead of seconds, using more accurate models 

and including pathologies and cellular level information to gain more robust information 

about heart function.   

 

8.10  Adam P. Arkin, Ph.D. 
Faculty Scientist, Physical Biosciences LBNL. 

Assistant Professor, Bioengineering, University of California Berkeley. 

Assistant Investigator Howard Hughes Medical Institute 

aparkin@lbl.gov 

Home page: http://www. http://gobi.lbl.gov/~aparkin/ 

Phone: 510-495-2366 

Dr. Adam Arkin is an Assistant Professor of Bioengineering at the University of California, 

Berkeley. He is also a Faculty Scientist in Physical Biosciences at the Lawrence Berkeley 

National Laboratory.  He is one of the central developers of BioSPICE and the director of the 

Virtual Institute of Microbial Stress and Survival (http://vimss.org). BioSpice researchers include 

biologists, computer scientists, engineers, mathematicians, and software developers. Their 
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collaborative research programs include experimental and computational studies of Bacillus 

subtilis, development of biophysical theory and software tools for analysis of the dynamics of 

evolutionary and cellular processes, and development of software tools to graphically represent 

cellular pathways, define conceptual and mathematical models of processes in the pathway, and 

link databases to biological entities in the pathway.  

 

Summary of Key Points 

1. There are two areas that are benefiting from HPC systems: spatial modeling and 

simulation of reaction-diffusion equations (algorithms do not scale well), and 

stochastic estimation and simulation (the latter being embarrassingly parallel). 

2. Spatial modeling of cellular processes, for example immune cell chemotaxis, 

sometimes requires mixed simulation modes that combine models of reaction-

diffusion equations for the signaling network with discrete mechanical operations 

for the cytomechanial processes that change the cell shape in response to 

chemical gradient signals processed by the signal transduction network. The 

mechanical and chemical processes are coupled in a feedback loop and thus 

cannot be separated. 

3. Cellular processes take place on many time scales; different reactions have 

different characteristic rates. Including cellular mechanics introduces another set 

of times scales. Algorithm development and formal abstraction will probably be 

the most important aspect of dealing with simulations involving multiple time 

scales. New algorithms should both be able to separate slow and fast time scales, 

with well-understood and defined approximation errors, and be numerically 

stable. 

4. An example simulation of a reaction-diffusion equation in 3-D involves 500 state 

variables (chemical species) and on the order of 500 equations. Including 

parameter estimation and sensitivity analyses makes this simulation 

computationally demanding.  

5. Simulations of the stochastic dynamics of gene expression and other biochemical 

processes have 10-15 state variables. These run time for these simulates depends 

exponentially on the reaction rates, with faster reactions requiring more run time. 
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6. Both spatial simulations and stochastic simulations can easily require 2 gigs of 

memory. 

7. Code diagnostic tools need to be updated. Code has become sufficiently 

complicated that a real tool to for designers and project managers to visualize 

large coding projects would improve productivity. 

8. I/O operations tend to be slow. While data files may only be on the order of a few 

gigabytes, transferring data around networks can be cause bottlenecks. 

9. I/O operations tend to be slow. While data files may only be on the order of a few 

gigabytes, transferring data around networks can be cause bottlenecks. 

10. Communication among participants in large modeling and code development 

projects can be difficult and lead to delays.  

11. A considerable amount of time is spent compiling code and it is often easier to 

reproduce code rather than re-use code written by another researcher using a 

different compiler. Compile time could be reduced drastically by designing 

compilers that are efficient across platforms but compile code from anywhere 

without library dependencies or with very well defined and packaged library 

dependencies. 

12. Better infrastructure that includes rational standards for documentation, data 

representation, and code needs to be developed. 

13. While there have been several attempts, there is still no good visualization tools 

for large scale, high dimensional data sets. 

14. Code diagnostic tools need to be updated. Code has become sufficiently 

complicated that a real tool to for designers and project managers to visualize 

large coding projects would improve productivity. 

 

8.11 Wah Chiu Ph.D. 
Department of Biochemistry & Molecular Biology 

Baylor College of Medicine 

wah@bcm.tmc.edu  

Home page: http://ncmi.bcm.tmc.edu/ncmi 

Phone: (713) 798-6985 
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Dr. Wah Chiu is the Alvin Romansky Professor at the Department of Biochemistry & Molecular 

Biology at the Baylor College of Medicine. He is the director of the National Center for 

Macromolecular Imaging (NCMI). Together with Dr. Steve Ludtke, Co-Director of NCMI, and 

Wen Jiang, a post-doctoral researcher, Dr. Chiu discussed his research on the use of electron 

cryomicroscopy to determine the three-dimensional structures of molecules and macromolecular 

assemblies at subnanometer resolution. Their laboratory is uniquely equipped with intermediate 

high-voltage electron cryomicroscopes that have been dedicated to advance the technology for 

imaging individual macromolecular assemblies embedded in vitreous ice. They are now 

developing computational procedures to facilitate high throughput and high quality data 

collection via computer instead of manual control approach. The NCMI has the missions of 

collaboration, training and dissemination in addition to core research and technology 

development. Presently, we are engaged with over 50 collaborators/users and 150 projects 

ranging from solving 3-D structures to exploring grid computing. 

 

Summary of key points 

1. Current computational work focuses on a technique known as single particle 

reconstruction. In this technique, electron cryo-microscopy is used to record projection 

images of individual molecules or macromolecular assemblies embedded in vitreous ice. 

These randomly oriented particle images are then processed using a complex sequence of 

algorithms including multidimensional alignment, deconvolution, Fourier and real-space 

reconstruction techniques, etc. The final result is a 3D structure of the original molecule. 

Images are extremely noisy, with typical peak SNR values of 0.6. 

2. Digital images range from 64x64 pixels to 1024x1024 pixel arrays. Reconstructions are 

thus 643 to 10243. For a given macromolecular assembly, between 10,000 and 1,000,000 

images are processed to produce the final reconstruction. For a small problem this may 

take only 100 CPU hours, but typical high-resolution problems require ~10,000 CPU-

hours, and the cutting edge problems now being worked on are anticipated to use 

100,000-1,000,000 CPU-Hours. The raw image data ranges from 1-100 gigabytes of 

storage. Memory requirement for typical problems is ~2 Gb/CPU, though larger 

problems would work better with 8-16 Gb. 
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3. Current methods use very coarse-grained parallelism with good scalability to well over 

100 CPUs. Larger problems scale better. For this reason, raw price-performance is the 

main consideration in cpu purchasing decisions. The NCMI currently has a 160 CPU 

linux cluster dedicated to processing, and this will at least double in the next year. 

4. As research moves towards generating higher resolution and larger images requiring 

longer running jobs, memory bandwidth could become a significant bottleneck. Current 

algorithms are coarse-grained, but algorithm changes to handle increased image sizes and 

produce better resolution may require more finely grained code implemented using MPI 

or other clustering protocol. 

5. The single particle reconstruction field is growing rapidly. Over the last 2-3 years, the 

number of researchers using NCMI software (known as EMAN) has nearly tripled to 

about 300 users. While most biological scientists today are familiar with computers, they 

may not have the expertise to adapt NCMI software to fit specific research needs. NCMI 

is seeking to make their technology packaged so that more scientists can use it for their 

own research. 

6. Studies have indicated that there has recently been a drop of nearly 20% of computer 

science majors in the US (http://www.usatoday.com/tech/news/2004-08-08-computer-

science_x.htm). If this develops into a trend, manpower issues could be a serious problem 

as fewer system managers and programmers enter the field although roughly 10% of NIH 

money is anticipated to be used for bio-computing activities in the coming decade.   

7. Desirable productivity tools that address the following issues: 

- Code optimization is a substantial issue. Currently available profiling tools often do not 

provide fine enough detail to provide significant performance improvements, even when they 

are possible. The profiler SHARK (Mac OSX) has demonstrated that there are substantial 

opportunities for optimizations that have been missed in our hand-coding efforts. Better 

freely available optimization/profiling tools would be very useful. 

- If MPI-based software is relied on, there are severe fault tolerance problems, since a 

single node crashing will kill the entire job. More fault-tolerant parallelism would be 

desirable. 

- Virtually all high-level programming is now done in Python with numerically intensive 

operations performed by embedded C++ libraries. While Python is not currently used directly 
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for numerically intensive work it would be quite desirable if this were possible in certain 

cases. The availability of a higher performance python solution is highly desirable, i.e. – a 

python compiler or better JIT environment.  

- It is possible to write code that is relatively platform independent. Experience has 

shown that it takes about two days worth of effort to port a moderately sized program across 

platforms. However, this assumes that minimal platform-specific optimizations are 

performed.  

 

 8.12 James B. Bassingthwaighte, Ph.D. 
Professor, Department of Bioengineering 

University of Washington 

Email: jbb@nsr.bioeng.washington.edu 

Home page: http://depts.washington.edu/bioe/people/bassingthwaighte.shtml 

Phone: (202) 685-2012 

 

Dr. James Bassingthwaighte is a Professor in the Department of Bioengineering at the University 

of Washington. He is the director of the National Simulation Resource Facility for Circulatory 

Transport and Exchange, which operates as a part of the Department of Bioengineering in the 

School of Medicine and the College of Engineering. The Resource was created with a focus on 

studying complex biological systems and networks involved in the transport and exchange of 

solutes and water in the microvasculature, within whole organs, and within the whole body. Dr. 

Bassingthwaighte was enthusiastic about JSim, a software environment being developed at 

National Simulation Resource (NSR) for scientific modeling that provides tools for development 

of models, for their run-time control, and for analysis of their outputs. He also discussed several 

issues regarding multi-scale modeling and model visualization. 

 

 Summary of key points 

1.Currently, supercomputing facilities don’t lend themselves to interactive use. Jobs are 

treated as batch processes. This does not allow the researcher to use computers as “mind 

expanders,” interacting with the computer to design, test, run, and visualize model 

solutions.  JSim has been used to design physiological models, reaction diffusion models, 
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circulatory and respiratory models, and models incorporating feedback for control of blood 

pressure, and large numbers of models for enzymatic reactions, channels, ionic pumps, 

biochemical systems and cellular excitation and contraction. 

2.The JSim takes advantage of the Mathematical Modeling Language (MML) to parse 

equations and to determine how variables should be calculated. Utilitizing a numerical 

library, the JSim can disentangle complex heterogeneous problems, mixing and matching 

algorithms as needed. JSim’s numerical methods include, among others, the ODE solvers 

CVODE, LSODE, LSODA, Radau, and Dopri5, the and the PDE solvers Tom 690 and 

Toms731. It also includes root solvers, delay lines, and matrix manipulators. While these 

solvers are among the best available, it is possible to find conditions which the solvers are 

unable to handle. 

3.In its current form, JSim is downloaded onto a host computer and runs on a single 

processor. In development is a web server to allow researchers to use JSim on a 

client/server basis. Future versions may also allow Jsim to run in a distributed 

environment.  

4.Multi-scale models are extremely complex. They incorporation information from the 

molecular and cellular levels up to organ and systems levels. Realistic models of the 

circulatory and respiratory systems under stress, for example exercise, require a description 

of the cellular events that create demands for oxygen. Having cellular level equations 

together with circulatory exchanges makes the system very stiff. Brute force methods are 

possible, but computationally demanding. It is equally challenging, however, to simplify 

models by using the results from the cellular level as descriptors to drive the higher level 

equations; changes at the higher level, for example start and stop of exercise, must be 

communicated back to the basic model. The development of strategies to automate the 

switching from the simplified submodels to the more detailed realistic submodels is critical 

to the designing of efficient yet realistic models that encompass several hierarchical levels. 

5.An interesting challenge for researchers is to develop tools to represent complex chemical 

networks. Such tools might allow researchers to visualize network behavior and to map 

networks and their products, providing information about the state of the system as 

parameters are changed.  
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8.13  Joachim Frank, Ph.D. 
Investigator, Howard Hughes Medical Institute 

Professor, School of Public Health, Biomedical Sciences 

New York State Department of Health, Wadsworth Center 

Joachim@wadsworth.org 

Home page: http://www.wadsworth.org/resnres/bios/frank.htm 

Phone: (518) 474-2810 

 

Dr. Frank is a Howard Hughes Medical School Institute Investigator. He is also a Professor for 

the School of Public Health and Biomedical Sciences at the New York State Department of 

Health, Wadsworth Center. His laboratory develops methods of 3D visualization and structural 

analysis with the electron microscope, and applies these methods to a number of important 

biological structures. Electron microscopy has a unique position among structural analysis 

methods in that it allows the bridging of a large size range in biology, from details close to 

atomic resolution to cellular organelles. A 3D image is formed by using a battery of techniques, 

including correlation analysis, multivariate statistical analysis, classification, and reconstruction. 

The main focus of his work is the study of the structure and function of the ribosome. Cryo-

electron microscope maps of ribosome complexes in a resolution range of 10-15 Å are used to 

determine the dynamic process of protein synthesis. 

 

Summary of key points 

1. In the past, interaction with supercomputer centers has not been good. There are too 

many hoops to jump through before one gains access, and too little interactive 

capabilities. 

2. Single particle reconstruction with data from electron microscopes is computer intensive. 

Constructing 3D images from data obtained from the microscopes is computer intensive. 

The data is noisy and contains multiple views of the particle from all angles. During the 

reconstruction process, the most computational demanding elements include the 

determination the orientation of the particle with respect to a template image and the 

refinement cycle that selects the projection that best represents the image. A typical 
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reconstruction must process 10,000-100,000 noisy projections. For larger particles with 

larger volumes and for higher resolution images, more refinement cycles are needed. 

3. The best resolution obtained to date is at 8 Angstroms. At this resolution, alpha helixes 

are visible, but beta sheets are not. At 3 Angstroms resolution, where beta sheets would 

be visible and most of the structure could be traced, it is estimated that 1 million images 

would be required. The following  capabilities need to be developed to achieve 3 

Angstrom resolution: 

- Data collection needs to be automated. Currently, micrographs are collected on film and 

then scanned. Direct digital readout with sufficiently large (4k x 4k and larger) CCD 

cameras, and automation of the collection of images are essential for higher productivity. 

 - At this resolution, there will be an explosion in the volume of computation. It 

will be necessary to make better use of existing computational resources, perhaps by 

developing distributed computing pipelines. 

- Algorithms need to be developed to deal with conformational heterogeneity. An 

underlying assumption of single particle reconstruction is that the molecules imaged have 

identical structure.  In order to differentiate between possible conformational states, 

classification algorithms, including self-organized maps and neural networks, may be 

needed to be folded into existing refinement techniques. 

      4. Some current bottlenecks in productivity include: 

- Scheduling tools use a lot of overhead, so these are not used. This means that the     

good will of users is required when multiple users are on the system and competition for 

resources is high. 

- Current code base is in Fortran. Investing resources to re-write the system in modern 

code would be desirable but is expensive and time consuming. 

- There have been problems, with vendors and academic software suppliers, in dealing 

with different architectures. Support systems do not carry across different systems and 

different vendors. In addition, providing support for external institutions using their 

software (SPIDER) on a continuing basis is difficult. External users across multiple 

architectures rely on updates from a small support staff. 

- Data streams and formats are not homogenous across commercial and academic 

software. This can present problems for collaborations, but it also prevents academic 
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groups from using multiple softwares. Researchers must learn to work together. One 

approach being tried is to divide the reconstruction procedure into interchangeable 

modules, with standard inputs and outputs, that are well defined and well documented. 

5. Algorithmic improvements are handled by specialists. Additional improvements in the  

reconstruction procedure are expected to come from (i) the inclusion of classification 

algorithms, (ii) a refinement scheme that is based on a simultaneous solution of the 

reconstruction and alignment problem, and (iii) updating algorithms as platforms change 

to take advantage of improved performance offered by new platforms. 

6. In the future, the single particle reconstruction approach will be increasingly used to 

look at dynamics. The ribosome must be seen as a dynamical system. In order to 

characterize the system over time, researchers will want to take many snapshots of 

system at various time points. It will be challenge to deal with the quantity of images, to 

link the density maps, and to interpret the time evolution of the system. This project will 

require much increased computational resources and different computational aspects, for 

example modeling and animation based on the time-evolving data.  

 

8.14 Ron Elber, Ph.D. 
Professor , Department of Computer Science 

Cornell University 

ron@cs.cornell.edu  

Home page: http://www.cs.cornell.edu/ron 

Phone: (607) 225-7416 

 

Dr. Ron Elber is a Professor in the Department of Computer Science at Cornell University. He is 

also on the faculty of the Cornell Genomics Initiative, Computational and Statistical Genomics 

Focus Area.  He is active in two core areas of research: bioinformatics and molecular dynamics. 

In bioinformatics, he is interested in protein annotation (structure and function prediction), 

protein evolution, protein folding potentials, and protein alignment. In protein dynamics, he 

develops theory, algorithms, and computer code to simulate bio-molecular dynamics, the long 

dynamics of biophysical processes, and protein folding. Among the substances that have been 
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studied in detail by Dr. Elber are the oxygen transport proteins hemoglobin and myoglobin and 

ion channels such as gramicidin. 

 

Summary of key points 

1. Bioinformatics and molecular dynamics present different computational demands. A 

molecular dynamic simulation of protein folding with a medium size protein of 150 

amino acids and from 1000 to 100000 particles can run for a month on a cluster of 100 

off-the-shelf CPU’s. On the other hand, most bioinformatics applications are much more 

rapid, completing within minutes or hours. While molecular dynamic simulations tend to 

require raw processing power, bioinformatic computation places a premium on memory 

and data sharing. These differences in computational needs mean that compromises must 

be met when purchasing new hardware. 

2. The different computational needs between bioinformatics and molecular dynamic 

applications can also be seen at the memory usage and I/O performance levels. 

Bioinformatic applications depend on access to large quantities of data and often load 

gigabytes of data into memory at once. In addition, in a distributed environment, the data 

must be shared across all nodes and each node must be capable of storing at least 30 

gigabytes. Molecular dynamic applications have limited I/O and memory demands, 

requiring on the order of 100 megabytes. 

3. There is room for improvement in the following areas: 

    - Fault tolerance in a distributed environment. Although local, in house fixes have 

adequately met current needs, O/S level changes would be appropriate. 

    - Platform porting. With special care, code can be made portable, especially across 

alternative unix/linux flavors. Windows, however, presents additional challenges, 

especially with stability. 

   - Code management. Current code management tools have been found to be too 

restrictive in an academic setting and are convenient to use. Current applications have 

10^5-10^6 lines of code. 

   - Debugging tools. Productivity would improve with better debugging tools. 



 
 

 108

   - Algorithmic.  Some machine learning tools manipulate matrices with 10^16 elements. 

There is little work being done to develop algorithms to manipulate very large data sets in 

a distributed environment. 

4. One of the striking observations in dynamics of biological molecules is the extremely 

large time scale they covered. Initiation by light absorption of biochemical processes is 

very rapid (femtoseconds), while protein folding is slow (milliseconds to minutes). 

Current molecular dynamic approaches are restricted to nanoseconds (10-9 seconds). 

Multi-scale modeling must maintain the detail description at the molecular level but be 

capable of generating a description of macro-level biology. Even if computer 

performance increases by a factor of two each year, this will be outpaced by the 

tremendous advantages that can be obtained by working on theory and algorithms, which 

are capable increasing performance by a factor of millions. 

5. Current directions in bioinformatics will soon require that very large databases stored 

at multiple sites are able to be accessed, placing large demands on I/O and memory. 

Stability of systems, especially windows-based, will become a larger issue. Within five 

years, he would like to be able to access databases that are a factor of 1000 times larger 

than currently in use. It will then be possible to begin to answer more challenging 

questions about the nature of the interaction between genetic changes at the molecular 

level and the environment. Researchers will be able to correlate protein structure and 

genomic information with the different observed phenotypes. This will allow us to gain a 

better understanding of the interaction among species and life on earth. 

 

8.15  Steinar Hauan Ph.D. 
Professor of Chemical Engineering 

Carnegie Mellon University 

hauan@cmu.edu  

Home page: http://www.cmu.edu/bme/faculty/hauan.html 

Phone: (412) 268-4390 

 

Dr. Steinar Hauan is a Professor of Chemical Engineering in the Biomedical Engineering 

Department at the Carnegie Mellon University.  Professor Hauan's research is in the area of 
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computer-aided process design and analysis of compex chemical systems. An important part of 

the work is to investigate how qualitative insights may be combined with numerical studies in 

order to arrive at solutions that are more readily understood. He discussed his research on agents 

for distributed, asynchronous process design. This research area explores how to solve large and 

truly hard Engineering Design problems with unknown structure. The main idea is to combine 

problem-specific insights and existing algorithms with techniques from artificial intelligence, 

information management, numerical mathematics and a distributed computing architecture. The 

approach is multi-threaded and relies on a collective of collaborating algorithmic agents 

implemented on our computer cluster.  

 

Summary of key points 

1. In the future, protein separation systems and analytical chemical laboratories will be 

constructed in a microchip structure. The design of these Lab-on-a-Chip devices will be 

aided by iterative computer processes using computer aided design techniques to 

optimize the placement of sub-systems to create multiplexed microchips with complex 

topologies. 

2.  The placement problem can be formulated using reduced order models with a multi-

objective, non-linear optimization function. Today’s computers, and even tommorrow’s, 

do not deliver enough performance to solve these optimization problems using 

conventional PDE’s solvers for chips with a non-trivial number of subsystems (the 

solution space grows exponentially with the number of subsystems).  

3.  One approach to the placement problem is to use asynchronous agents that collaborate 

to arrive at a solution. This approach is multi-threaded, and requires the development of 

distributed algorithms without central control of agents and complex adaptive systems to 

monitor CPU time.  

4. There are holes in existing algorithms that handle remote processes; current RPC code 

is not robust enough. Progress has been made in the Hauan lab on a remote process 

interface to monitor and fire more than 300 processes per second . Current versions of 

MPI are not fault tolerant and do not scale well to grid processing. MPI was not designed 

to be fault-tolerant for asynchronous system; rather, it was implemented to enforce 

synchronization and would thus never get (or need) the type of redundancy and fault 
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tolerance necessary for large scale, asynchronous processing. Management tools are 

needed in a distributed environment to recover, or at least ignore, failures in 

communication. 

5. Compiler speed and CPU types compare differently for different systems. There is no 

correlation between compilers and applications. The work done per cycle on the same 

hardware varies with compilers. Speed and performance varies across systems and 

compilers. It would help if someone had a benchmark library for different types of 

calculations. This would enable users to better evaluate what machines they 

  should purchase and use, based on their specific applications. 

6. Two important classes of algorithms that will play a large role in biomedical research 

are finite element code and density functional calculations. While finite elements 

methods are a slow way of doing optimization, they are good for modeling; they can be 

applies to investigate features for the Lab-on-a-Chip design. Density functional theory is 

being used, for example, to investigate how molecules interact with on-chip devices and 

to explore how blood coagulates. It will be important to lower the barrier for researchers 

to use these tools and provide parallelized version of existing code. 

7.  PDE optimization will require algorithms with improved performance. Currently, 

research on chip design is good with modeling at the PDE level. There is a need, 

however, to integrate PDE based optimization with logic based optimization and to move 

this integration to large, complex systems. 

 

8.16  John Yate, III, Ph.D. 
Professor, Cell Biology, Department of Cell Biology 

Scripps Research Institute 

jyates@scripps.edu 

Home page: http://www.fields.scripps.edu 

Phone: (858) 784-8863 

 

Dr. John Yates is a Professor of Cell Biology at the Scripps Research Institute, where he is 

director of the Proteomics Mass Spectrometry Lab. Tandem mass spectrometry is a powerful 

technique for characterizing a proteome. Proteomics by tandem mass spectrometry requires 
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powerful informatics capabilities. First, the sequence corresponding to each peptide's tandem 

mass spectrum must be identified. Once those identifications have been completed, 

additional tools are needed to summarize and organize these identifications. Proteomics by 

tandem mass spectrometry requires powerful informatics capabilities. 

 

Summary of Key Points 

5. Proteomic analysis using tandem mass spectrometry relies, in part, on software to 

automate the process of performing protein identification and peptide sequencing by 

utilizing mass spectrometry fragmentation patterns to search protein and nucleotide 

databases.  

6. With improved throughput obtained by parallelizing software to run on a Beowulf 

cluster, one to two million spectra can now be analyzed in a week. An analysis of 100-

200,000 mass spectra, which used to run for weeks to months, can now be done in hours 

to days, depending on the database being searched. 

7. To drive down the cost of I/O operations, copies of sequence databases are stored locally. 

The growth in size of sequence databases will eventually stress memory capabilities.  

8. The current algorithmic bottleneck occurs in the initial pass through the sequence 

database to identify amino acid sequences that match the measured mass of peptides 

under consideration. More efficient search algorithms could increase productivity by a 

factor of 10 to 100. 

9. Space and cooling are significant cost factors for Beowulf clusters.  

10. Collaboration with other research institutes could be facilitated with higher bandwith 

internet communications. Experience has shown that it is often faster to run an analysis 

on a mass spectrometer dataset on slower hardware than it is to ftp that same dataset to 

another site.  
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Conclusion 

 
Computing requirements are dramatically increasing in all areas of biological research. Current 

and future needs will focus on integration of diverse sets of data, originating from a variety of 

experimental techniques which are capable of producing data at the levels of entire cells, organs, 

organisms and populations.   Our study found a critical need for theoretical, algorithmic and 

software advances in storing, retrieving, networking, processing, analyzing, navigating and 

visualizing biological information.  Sophisticated machine learning approaches are needed in 

order to deal with huge amounts of data.  Machine learning methods (neural networks, hidden 

Markov models, etc.) are well suited for domains characterized by large quantities of data, noisy 

patterns and the absence of general theories. These methods are computationally intensive, 

clearly require high-end computing capabilities, and would benefit from further improvements in 

computational performance.   
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